Skip to main content

Self-responsive Nanomaterials for Flexible Supercapacitors

  • Chapter
  • First Online:
Responsive Nanomaterials for Sustainable Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 297))

  • 567 Accesses

Abstract

The worldwide demand for green and renewable energy resources as well as the development of electronic devices has greatly boosted the improvement of energy storage systems. As one of the major types of energy storage devices, supercapacitors, with ultrahigh power densities, long-term cycling lives, and rapid charge and discharge capabilities, have been extensively investigated at the current stage, especially for those flexible or wearable electronic devices, which could be integrated into a smart system. In this chapter, the basic structures, the energy storage mechanisms, the categorization, and the characteristics of supercapacitors are comprehensively discussed. This chapter mainly focuses on different major components of flexible supercapacitors, ranging from the flexible electrode structure, the flexible substrates, and the improved electrolyte, to the construction of self-responsive flexible devices. Meanwhile, the emerging flexible integrated systems with these devices have also been illustrated, such as the energy sensor integrated systems and the energy collection-storage-sensing systems. Furthermore, the future trend of flexible supercapacitors based on future demands will be lastly discussed, focusing on the feasible and efficient strategies for designing novel and high-performance supercapacitors in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Nowotny, J. Dodson, S. Fiechter, T.M. Gür, B. Kennedy, W. Macyk, T. Bak, W. Sigmund, M. Yamawaki, K.A. Rahman, Towards global sustainability: education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 81, 2541–2551 (2018)

    Article  Google Scholar 

  2. X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff, L. Wang, J. Liang, Z. Sun, S.X. Dou, Nonlithium metal-sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019)

    Article  CAS  Google Scholar 

  3. D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps. 2(9), 743–765 (2019)

    Article  Google Scholar 

  4. S.-L. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013)

    Article  CAS  Google Scholar 

  5. K. Chen, D. Xue, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4(20), 7522–7537 (2016)

    Article  CAS  Google Scholar 

  6. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology, pp. 320–329

    Google Scholar 

  7. L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, S.X. Dou, Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 14, 22–48 (2018)

    Article  Google Scholar 

  8. T. Yang, J. Liang, I. Sultana, M.M. Rahman, M.J. Monteiro, Y. Chen, Z. Shao, S.R.P. Silva, J. Liu, Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 6(18), 8280–8288 (2018)

    Article  CAS  Google Scholar 

  9. L. Wen, J. Chen, J. Liang, L. Feng, H.M. Cheng, Flexible batteries ahead. Natl. Sci. Rev. 4(1), 20–23 (2016)

    Article  CAS  Google Scholar 

  10. L. Wen, J. Liang, J. Chen, Z.-Y. Chu, H.-M. Cheng, F. Li, Smart materials and design toward safe and durable lithium ion batteries. Small Methods 3(11), 1900323 (2019)

    Article  CAS  Google Scholar 

  11. A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016)

    Article  CAS  Google Scholar 

  12. K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014)

    Article  CAS  Google Scholar 

  13. P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51(12), 2901–2912 (2010)

    Article  CAS  Google Scholar 

  14. O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6), 1303–1310 (2005)

    Article  CAS  Google Scholar 

  15. A. García-Gómez, G. Moreno-Fernández, B. Lobato, T.A. Centeno, Constant capacitance in nanopores of carbon monoliths. Phys. Chem. Chem. Phys. 17(24), 15687–15690 (2015)

    Article  CAS  Google Scholar 

  16. Y. Tong, J. Liang, H.K. Liu, S.X. Dou, Energy storage in Oceania. Energy Storage Mater. 20, 176–187 (2019)

    Google Scholar 

  17. X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)

    Article  CAS  Google Scholar 

  18. V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016)

    Article  CAS  Google Scholar 

  19. Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018)

    Article  CAS  Google Scholar 

  20. Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)

    Article  CAS  Google Scholar 

  21. X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z.L. Wang, Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015)

    Article  CAS  Google Scholar 

  22. W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai, D. Yang, X. Jiang, J. Liu, J. Liang, S.X. Dou, Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019)

    Article  CAS  Google Scholar 

  23. J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010)

    Article  CAS  Google Scholar 

  24. J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013)

    Article  CAS  Google Scholar 

  25. Y. Qiao, C.M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170(1), 79–84 (2007)

    Article  CAS  Google Scholar 

  26. H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)

    Article  CAS  Google Scholar 

  27. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)

    Article  CAS  Google Scholar 

  28. K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)

    Article  CAS  Google Scholar 

  29. K. Jurewicz, K. Babeł, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon 44(12), 2368–2375 (2006)

    Article  CAS  Google Scholar 

  30. T. Zhang, S. Han, W. Guo, F. Hou, J. Liu, X. Yan, S. Chen, J. Liang, Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. SM&T 20, e00096 (2019)

    CAS  Google Scholar 

  31. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)

    Article  CAS  Google Scholar 

  32. J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019)

    Article  CAS  Google Scholar 

  33. C. Zhang, J. Li, E. Liu, C. He, C. Shi, X. Du, R.H. Hauge, N. Zhao, Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)

    Article  CAS  Google Scholar 

  34. Z.-H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.-X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4), 3557–3567 (2018)

    Article  CAS  Google Scholar 

  35. T. Liu, W.G. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42(23), 3541–3552 (1997)

    Article  CAS  Google Scholar 

  36. L. Cao, F. Xu, Y.-Y. Liang, H.-L. Li, Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16(20), 1853–1857 (2004)

    Article  CAS  Google Scholar 

  37. Y. Fu, J. Song, Y. Zhu, C. Cao, High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J. Power Sources 262, 344–348 (2014)

    Article  CAS  Google Scholar 

  38. Z. Yang, C.-Y. Chen, H.-T. Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 196(18), 7874–7877 (2011)

    Article  CAS  Google Scholar 

  39. J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831–838 (2014)

    Article  CAS  Google Scholar 

  40. C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W. Mai, H.J. Fan, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015)

    Article  CAS  Google Scholar 

  41. X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, H.J. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8(5), 1559–1568 (2015)

    Article  CAS  Google Scholar 

  42. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  43. X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 42, 144–168 (2020)

    Article  Google Scholar 

  44. G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, F. Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 4(9), 870–881 (2011)

    Article  CAS  Google Scholar 

  45. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 148(8), A910–A914 (2001)

    Article  CAS  Google Scholar 

  46. J. Lloyd-Hughes, T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012)

    Article  CAS  Google Scholar 

  47. B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–5101 (2008)

    Article  CAS  Google Scholar 

  48. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 73 (2010)

    Article  CAS  Google Scholar 

  49. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24(41), 5610–5616 (2012)

    Article  CAS  Google Scholar 

  50. Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015)

    Article  CAS  Google Scholar 

  51. S. Wu, G. Chen, N.Y. Kim, K. Ni, W. Zeng, Y. Zhao, Z. Tao, H. Ji, Z. Lee, Y. Zhu, Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small 12(17), 2376–2384 (2016)

    Article  CAS  Google Scholar 

  52. H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010)

    Article  CAS  Google Scholar 

  53. Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012)

    Article  CAS  Google Scholar 

  54. Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48(5), 575–580 (2003)

    Article  CAS  Google Scholar 

  55. J.H. Park, J.M. Ko, O. Ok Park, Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors. J. Electrochem. Soc. 150(7), A864–A867 (2003)

    Article  CAS  Google Scholar 

  56. X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B. Luo, H.-K. Liu, S.-X. Dou, An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 28(26), 1801016 (2018)

    Article  CAS  Google Scholar 

  57. U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16), 6999–7021 (2015)

    Article  CAS  Google Scholar 

  58. J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017)

    Article  CAS  Google Scholar 

  59. X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6(17), 9889–9924 (2014)

    Article  CAS  Google Scholar 

  60. Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015)

    Article  CAS  Google Scholar 

  61. C. Zhang, T.M. Higgins, S.-H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016)

    Article  CAS  Google Scholar 

  62. N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J. Energy Chem. 25(3), 463–471 (2016)

    Article  Google Scholar 

  63. P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11(1), 444–452 (2017)

    Article  CAS  Google Scholar 

  64. B. Pandit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017)

    Article  CAS  Google Scholar 

  65. Y. Qian, R. Liu, Q. Wang, J. Xu, D. Chen, G. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2(28), 10917–10922 (2014)

    Article  CAS  Google Scholar 

  66. P. Pande, P.G. Rasmussen, L.T. Thompson, Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012)

    Article  CAS  Google Scholar 

  67. M.S. Javed, S. Dai, M. Wang, Y. Xi, Q. Lang, D. Guo, C. Hu, Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7(32), 13610–13618 (2015)

    Article  CAS  Google Scholar 

  68. X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017)

    Article  CAS  Google Scholar 

  69. A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)

    Article  CAS  Google Scholar 

  70. Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J. Mater. Chem. 22(11), 4938–4943 (2012)

    Article  CAS  Google Scholar 

  71. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47(1), 89–107 (1994)

    Article  CAS  Google Scholar 

  72. M. Kalaji, P.J. Murphy, G.O. Williams, The study of conducting polymers for use as redox supercapacitors. Synth. Met. 102(1), 1360–1361 (1999)

    Article  CAS  Google Scholar 

  73. Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, C. Zhi, Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1(4), 183–195 (2018)

    Article  Google Scholar 

  74. T.M. Ng, M.T. Weller, G.P. Kissling, L.M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H.J. Snaith, D. Lane, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5(3), 1192–1200 (2017)

    Article  CAS  Google Scholar 

  75. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)

    Article  CAS  Google Scholar 

  76. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)

    Article  CAS  Google Scholar 

  77. Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar, J. Xu, W. Sun, J. Zhu, Q. Yan, W. Huang, 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017)

    Article  CAS  Google Scholar 

  78. Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)

    Article  CAS  Google Scholar 

  79. P. Lu, X. Wang, L. Wen, X. Jiang, W. Guo, L. Wang, X. Yan, F. Hou, J. Liang, H.-M. Cheng, S.X. Dou, Silica-mediated formation of nickel sulfide nanosheets on CNT films for versatile energy storage. Small 15(15), 1805064 (2019)

    Article  CAS  Google Scholar 

  80. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)

    Article  CAS  Google Scholar 

  81. A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016)

    Article  CAS  Google Scholar 

  82. H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57(7), 1898–1902 (2018)

    Article  CAS  Google Scholar 

  83. L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016)

    Article  CAS  Google Scholar 

  84. Y. Ai, Z. Lou, L. Li, S. Chen, H.S. Park, Z.M. Wang, G. Shen, Meters-long flexible CoNiO2-nanowires@ carbon-fibers based wire-supercapacitors for wearable electronics. Adv. Mater. Technol. 1(8), 1600142 (2016)

    Article  CAS  Google Scholar 

  85. B. Liu, D. Tan, X. Wang, D. Chen, G. Shen, Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. Small 9(11), 1998–2004 (2013)

    Article  CAS  Google Scholar 

  86. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012)

    Article  CAS  Google Scholar 

  87. S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013)

    Article  Google Scholar 

  88. T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, Z. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013)

    Article  CAS  Google Scholar 

  89. Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)

    Article  CAS  Google Scholar 

  90. H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4(12), 7020–7026 (2012)

    Article  CAS  Google Scholar 

  91. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013)

    Article  CAS  Google Scholar 

  92. X. Hong, Y. Lu, S. Li, X. Wang, X. Wang, J. Liang, Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim. Acta 294, 376–382 (2019)

    Article  CAS  Google Scholar 

  93. Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1(2), 258–261 (2013)

    Article  CAS  Google Scholar 

  94. A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003)

    Article  CAS  Google Scholar 

  95. P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W. Chou, Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014)

    Article  CAS  Google Scholar 

  96. J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)

    Article  CAS  Google Scholar 

  97. X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)

    Article  CAS  Google Scholar 

  98. Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013)

    Article  CAS  Google Scholar 

  99. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)

    Article  CAS  Google Scholar 

  100. X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013)

    Article  CAS  Google Scholar 

  101. H. Wu, K. Jiang, S. Gu, H. Yang, Z. Lou, D. Chen, G. Shen, Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 8(11), 3544–3552 (2015)

    Article  CAS  Google Scholar 

  102. M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)

    Article  CAS  Google Scholar 

  103. Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, J.S. Ha, Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application. Carbon 81, 29–37 (2015)

    Article  CAS  Google Scholar 

  104. Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28(11), 2217–2222 (2016)

    Article  CAS  Google Scholar 

  105. J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016)

    Article  CAS  Google Scholar 

  106. Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.-D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016)

    Article  CAS  Google Scholar 

  107. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)

    Article  CAS  Google Scholar 

  108. X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5(17), 7831–7837 (2013)

    Article  CAS  Google Scholar 

  109. X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10), 9200–9206 (2012)

    Article  CAS  Google Scholar 

  110. Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017)

    Article  CAS  Google Scholar 

  111. C. Yan, P.S. Lee, Stretchable energy storage and conversion devices. Small 10(17), 3443–3460 (2014)

    Article  CAS  Google Scholar 

  112. X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, Z.L. Wang, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017)

    Article  CAS  Google Scholar 

  113. X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014)

    Article  CAS  Google Scholar 

  114. D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28(4), 748–756 (2016)

    Article  CAS  Google Scholar 

  115. J. Xu, G. Shen, A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 13, 131–139 (2015)

    Article  CAS  Google Scholar 

  116. J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 25(45), 6625–6632 (2013)

    Article  CAS  Google Scholar 

  117. S.R. Shin, C.K. Lee, I. So, J.-H. Jeon, T.M. Kang, C. Kee, S.I. Kim, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008)

    Article  CAS  Google Scholar 

  118. Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448–6451 (2014)

    Article  CAS  Google Scholar 

  119. Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016)

    Article  CAS  Google Scholar 

  120. X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016)

    Article  CAS  Google Scholar 

  121. Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang, Y. Ma, C. Yang, J. Su, L. Li, F. Long, Z. Zou, Y. Gao, A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016)

    Article  CAS  Google Scholar 

  122. Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012)

    Article  CAS  Google Scholar 

  123. T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51(48), 11977–11980 (2012)

    Article  CAS  Google Scholar 

  124. H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016)

    Article  CAS  Google Scholar 

  125. H. Huang, L. Lu, J. Wang, J. Yang, S.-F. Leung, Y. Wang, D. Chen, X. Chen, G. Shen, D. Li, Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci. 6(10), 2965–2971 (2013)

    Article  CAS  Google Scholar 

  126. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014)

    Article  CAS  Google Scholar 

  127. J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1(5), 1600074 (2016)

    Article  CAS  Google Scholar 

  128. H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9(7), 2262–2266 (2016)

    Article  CAS  Google Scholar 

  129. Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014)

    Article  CAS  Google Scholar 

  130. M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016)

    Article  CAS  Google Scholar 

  131. J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014)

    Article  CAS  Google Scholar 

  132. Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6(3), 805–812 (2013)

    Article  CAS  Google Scholar 

  133. Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 1(3), 954–958 (2013)

    Article  CAS  Google Scholar 

  134. Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)

    Article  CAS  Google Scholar 

  135. G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang, A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788–3796 (2014)

    Article  CAS  Google Scholar 

  136. G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)

    Article  CAS  Google Scholar 

  137. Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016)

    Article  CAS  Google Scholar 

  138. C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016)

    Article  CAS  Google Scholar 

  139. Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z.L. Wang, Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014)

    Article  CAS  Google Scholar 

  140. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470 (2014)

    Article  CAS  Google Scholar 

  141. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  CAS  Google Scholar 

  142. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015)

    Article  CAS  Google Scholar 

  143. S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit. ACS Nano 7(12), 11263–11271 (2013)

    Article  CAS  Google Scholar 

  144. J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015)

    Article  CAS  Google Scholar 

  145. W. Tang, C.B. Han, C. Zhang, Z.L. Wang, Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9, 121–127 (2014)

    Article  CAS  Google Scholar 

  146. X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, D., Tong, Y., Wen, L., Liang, J. (2020). Self-responsive Nanomaterials for Flexible Supercapacitors. In: Sun, Z., Liao, T. (eds) Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-030-39994-8_3

Download citation

Publish with us

Policies and ethics