Skip to main content

The Future of Pain Therapeutics

  • Chapter
  • First Online:
Pain Management for Clinicians

Abstract

New chronic pain therapeutics are desperately needed, as many current treatments do not adequately treat pain in many patients. Ongoing preclinical research has found promising new techniques to better diagnose pain mechanisms and to treat pain. In this chapter we will focus on cutting edge technologies that show the most promise to provide relief for the millions of chronic pain patients seeking treatment. The chapter will cover the potential for the emergence of new pharmaceuticals, implanted devices, genetic therapies, and behavioral modifications that may well be available in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The potential role of sensory testing, skin biopsy, and functional brain imaging as biomarkers in chronic pain clinical trials: IMMPACT considerations. J Pain. 2017;18(7):757–77.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Backonja MM, Attal N, Baron R, Bouhassira D, Drangholt M, Dyck PJ, Edwards RR, Freeman R, Gracely R, Haanpaa MH, Hansson P, Hatem SM, Krumova EK, Jensen TS, Maier C, Mick G, Rice AS, Rolke R, Treede R-D, Serra J, Toelle T, Tugnoli V, Walk D, Walalce MS, Ware M, Yarnitsky D, Ziegler D. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain. 2013;154(9):1807–19. PMID: 23742795.

    Article  PubMed  Google Scholar 

  3. Max MB. Towards physiologically based treatment of patients with neuropathic pain. Pain. 1990;42(2):131–7. PMID: 1701044.

    Article  CAS  PubMed  Google Scholar 

  4. Fillingim RB, Loeser JD, Baron R, Edwards RR. Assessment of chronic pain: domains, methods, and mechanisms. J Pain Off J Am Pain Soc. 2016;17(9 Suppl):T10–20. PMCID: PMC5010652.

    Article  Google Scholar 

  5. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM, Melton DA, Yanai IA. Single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 2016;3(4):346–360.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCarthy BG, Hsieh ST, Stocks A, Hauer P, Macko C, Cornblath DR, Griffin JW, McArthur JC. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology. 1995;45(10):1848–55. PMID: 7477980.

    Article  CAS  PubMed  Google Scholar 

  7. Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, Smith AG, Hsieh S-T, Mellgren SI, Umapathi T, Ziegler D, Faber CG, Merkies ISJ. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst JPNS. 2010;15(3):202–7. PMID: 21040142.

    Article  PubMed  Google Scholar 

  8. Novella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve. 2001;24(9):1229–31. PMID: 11494278.

    Article  CAS  PubMed  Google Scholar 

  9. Chao C-C, Huang C-M, Chiang H-H, Luo K-R, Kan H-W, Yang NC-C, Chiang H, Lin W-M, Lai S-M, Lee M-J, Shun C-T, Hsieh S-T. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol. 2015;78(2):272–83. PMCID: PMC5034810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burakgazi AZ, Messersmith W, Vaidya D, Hauer P, Hoke A, Polydefkis M. Longitudinal assessment of oxaliplatin-induced neuropathy. Neurology. 2011;77(10):980–6. PMCID: PMC3171958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oaklander AL, Herzog ZD, Downs HM, Klein MM. Objective evidence that small-fiber polyneuropathy underlies some illnesses currently labeled as fibromyalgia. Pain. 2013;154(11):2310–6. PMCID: PMC3845002.

    Article  PubMed  Google Scholar 

  12. Reddan MC, Wager TD. Modeling pain using fMRI: from regions to biomarkers. Neurosci Bull. 2018;34(1):208–15.

    Article  PubMed  Google Scholar 

  13. Younger JW, Shen YF, Goddard G, Mackey SC. Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain. 2010;149(2):222–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmidt-Wilcke T, Luerding R, Weigand T, Jürgens T, Schuierer G, Leinisch E, Bogdahn U. Striatal grey matter increase in patients suffering from fibromyalgia – a voxel-based morphometry study. Pain. 2007;132:S109–16.

    Article  PubMed  Google Scholar 

  15. Martucci KT, Ng P, Mackey S. Neuroimaging chronic pain: what have we learned and where are we going? Future Neurol. 2014;9(6):615–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS. Effective treatment of chronic low Back pain in humans reverses abnormal brain anatomy and function. J Neurosci. 2011;31(20):7540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett DLH, Woods CG. Painful and painless channelopathies. Lancet Neurol. 2014;13(6):587–99.

    Article  CAS  PubMed  Google Scholar 

  18. Faber CG, Hoeijmakers JGJ, Ahn H-S, Cheng X, Han C, Choi J-S, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, Dib-Hajj S, Drenth JPH, Waxman SG, Merkies ISJ. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71(1):26–39.

    Article  CAS  PubMed  Google Scholar 

  19. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444(7121):894–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blesneac I, Themistocleous AC, Fratter C, Conrad LJ, Ramirez JD, Cox JJ, Tesfaye S, Shillo PR, Rice ASC, Tucker SJ, Bennett DLH. Rare Nav1.7 variants associated with painful diabetic peripheral neuropathy. Pain. 2017;159:469–80.

    Article  PubMed Central  CAS  Google Scholar 

  21. Suri P, Palmer MR, Tsepilov YA, Freidin MB, Boer CG, Yau MS, Evans DS, Gelemanovic A, Bartz TM, Nethander M, Arbeeva L, Karssen L, Neogi T, Campbell A, Mellstrom D, Ohlsson C, Marshall LM, Orwoll E, Uitterlinden A, Rotter JI, Lauc G, Psaty BM, Karlsson MK, Lane NE, Jarvik GP, Polasek O, Hochberg M, Jordan JM, Van Meurs JBJ, Jackson R, Nielson CM, Mitchell BD, Smith BH, Hayward C, Smith NL, Aulchenko YS, Williams FMK. Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain. Loos RJF, editor. PLOS Genet. 2018;14(9):e1007601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Paul JA, Aich A, Abrahante JE, Wang Y, LaRue RS, Rathe SK, Kalland K, Mittal A, Jha R, Peng F, Largaespada DA, Bagchi A, Gupta K. Transcriptomic analysis of gene signatures associated with sickle pain. Sci Data. 2017;16(4):170051. PMCID: PMC5749120.

    Article  CAS  Google Scholar 

  23. Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim J-Y, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq–based resource for pain and sensory neuroscience research. Pain. 2018;159(7):1325–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S. Molecular architecture of the mouse nervous system. Cell. 2018;174(4):999–1014.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sorge RE, Totsch SK. Sex differences in pain: sex differences in pain. J Neurosci Res [Internet]. 2016. [cited 2016 Nov 20]; Available from: https://doi.org/10.1002/jnr.23841.

    Article  PubMed  CAS  Google Scholar 

  26. Sorge RE, LaCroix-Fralish ML, Tuttle AH, Sotocinal SG, Austin J-S, Ritchie J, Chanda ML, Graham AC, Topham L, Beggs S, Salter MW, Mogil JS. Spinal cord toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J Neurosci. 2011;31(43):15450–4. PMCID: PMC3218430.

    Article  CAS  PubMed  Google Scholar 

  27. Taves S, Berta T, Liu D-L, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S, Ji R-R. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun. 2016;55:70–81.

    Article  CAS  PubMed  Google Scholar 

  28. Paige C, Maruthy GB, Mejia G, Dussor G, Price T. Spinal inhibition of P2XR or p38 signaling disrupts hyperalgesic priming in male, but not female. Mice Neurosci. 2018;385:133–42.

    Article  CAS  Google Scholar 

  29. Inyang KE, Szabo-Pardi T, Wentworth E, McDougal TA, Dussor G, Burton MD, Price TJ. The antidiabetic drug metformin prevents and reverses neuropathic pain and spinal cord microglial activation in male but not female mice. Pharmacol Res. 2019;139:1–16.

    Article  CAS  PubMed  Google Scholar 

  30. Sorge RE, Mapplebeck JCS, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin J-S, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji R-R, Zhang J, Salter MW, Mogil JS. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krukowski K, Eijkelkamp N, Laumet G, Hack CE, Li Y, Dougherty PM, Heijnen CJ, Kavelaars A. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J Neurosci. 2016;36(43):11074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: targeting the source: novel therapeutic strategies for CIPN. Cancer. 2018;124(11):2289–98.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Skolnick P, Volkow ND. Re-energizing the development of pain therapeutics in light of the opioid epidemic. Neuron. 2016;92(2):294–7.

    Article  CAS  PubMed  Google Scholar 

  34. Goadsby PJ, Reuter U, Hallström Y, Broessner G, Bonner JH, Zhang F, Sapra S, Picard H, Mikol DD, Lenz RA. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017;377(22):2123–32.

    Article  CAS  PubMed  Google Scholar 

  35. Dodick D, Goadsby P, Silberstein S, Lipton R, Hirman J, Randomized SJ. Double-blind, placebo-controlled trial of ALD403, an anti-CGRP peptide antibody in the prevention of chronic migraine. (S52.003). Neurology. 2017;88(16 Supplement):S52.003.

    Google Scholar 

  36. Dodick DW, Goadsby PJ, Spierings ELH, Scherer JC, Sweeney SP, Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2014;13(9):885–92.

    Article  CAS  PubMed  Google Scholar 

  37. Bigal ME, Walter S, Rapoport AM. Therapeutic antibodies against CGRP or its receptor: antibodies anti-CGRP. Br J Clin Pharmacol. 2015;79(6):886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel MK, Kaye AD, Tanezumab URD. Therapy targeting nerve growth factor in pain pathogenesis. J Anaesthesiol Clin Pharmacol. 2018;34(1):111–6. PMCID: PMC5885425.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller RE, Malfait A-M, Block JA. Current status of nerve growth factor antibodies for the treatment of osteoarthritis pain. Clin Exp Rheumatol. 2017;35 Suppl 107(5):85–7. PMCID: PMC6007861.

    PubMed  Google Scholar 

  40. Lee J-H, Park C-K, Chen G, Han Q, Xie R-G, Liu T, Ji R-R, Lee S-Y. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. 2014;157(6):1393–404. PMCID: PMC4098795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers MH, Winters C, Price J, Young CE, Verschoof H, Sherrington R, Pimstone SN, Hayden MR. Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain. 2012;153(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  42. Payne CE, Brown AR, Theile JW, Loucif AJC, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM, Prime RL, Stockbridge G, Kirkup AJ, Bannon AW, England S, Chapman ML, Bagal S, Roeloffs R, Anand U, Anand P, Bungay PJ, Kemp M, Butt RP, Stevens EB. A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol. 2015;172(10):2654–70. PMCID: PMC4409913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med. 2011;51(5):951–66. PMCID: PMC3134634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niwa Y, Somiya K, Michelson AM, Puget K. Effect of liposomal-encapsulated superoxide dismutase on active oxygen-related human disorders. A preliminary study. Free Radic Res Commun. 1985;1(2):137–53. PMID: 3880279.

    Article  CAS  PubMed  Google Scholar 

  45. Linn AJ, Steinbrook RA. Peripherally restricted μ-opioid receptor antagonists: a review. Tech Reg Anesth Pain Manag. 2007;11(1):27–32.

    Article  Google Scholar 

  46. PJ-M R. Peripheral kappa-opioid agonists for visceral pain. Br J Pharmacol. 2004;141(8):1331–4.

    Article  CAS  Google Scholar 

  47. Leone P, Shera D, McPhee SWJ, Francis JS, Kolodny EH, Bilaniuk LT, Wang D-J, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D, During MJ, Samulski RJ, Janson CG. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med. 2012;4(165):165ra163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res. 2011;70(1):124–7.

    Article  PubMed  Google Scholar 

  49. Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES. A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng. 2011;8(4):046021.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon ASY. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods. 2015;12(10):969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, Pullen MY, Noh KN, Davidson S, Oh SJ, Yoon J, Jang K-I, Samineni VK, Norman M, Grajales-Reyes JG, Vogt SK, Sundaram SS, Wilson KM, Ha JS, Xu R, Pan T, Kim T, Huang Y, Montana MC, Golden JP, Bruchas MR, Gereau RW, Rogers JA. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33(12):1280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, McIlvried LA, Copits BA, Samineni VK, Crawford KE, Kim DH, Srivastava P, Kim BH, Min S, Shiuan Y, Yun Y, Payne MA, Zhang J, Jang H, Li Y, Lai HH, Huang Y, Park S-I, Gereau RW, Rogers JA. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 2019;565(7739):361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ji Z-G, Ito S, Honjoh T, Ohta H, Ishizuka T, Fukazawa Y, Yawo H. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS ONE. 2012;7(3):e32699. Baccei ML, editor.

    Google Scholar 

  54. Daou I, Tuttle AH, Longo G, Wieskopf JS, Bonin RP, Ase AR, Wood JN, De Koninck Y, Ribeiro-da-Silva A, Mogil JS, Seguela P. Remote Optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci. 2013;33(47):18631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iyer SM, Montgomery KL, Towne C, Lee SY, Ramakrishnan C, Deisseroth K, Delp SL. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol. 2014;32(3):274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cowie AM, Moehring F, O’Hara C, Stucky CL. Optogenetic inhibition of CGRPα sensory neurons reveals their distinct roles in neuropathic and incisional pain. J Neurosci. 2018;38(25):5807–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li B, Yang X, Qian F, Tang M, Ma C, Chiang L-Y. A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter. Brain Res. 2015;1609:12–20.

    Article  CAS  PubMed  Google Scholar 

  58. Roth BL. DREADDs for neuroscientists. Neuron. 2016;89(4):683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sluka KA, Frey-Law L, Hoeger Bement M. Exercise-induced pain and analgesia? Underlying mechanisms and clinical translation. Pain. 2018;159:S91–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Grace PM, Fabisiak TJ, Green-Fulgham SM, Anderson ND, Strand KA, Kwilasz AJ, Galer EL, Walker FR, Greenwood BN, Maier SF, Fleshner M, Watkins LR. Prior voluntary wheel running attenuates neuropathic pain. Pain. 2016;157(9):2012–23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dailey DL, Rakel BA, Vance CGT, Liebano RE, Amrit AS, Bush HM, Lee KS, Lee JE, Sluka KA. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain. 2013;154(11):2554–62. PMCID: PMC3972497.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sampey BP, Freemerman AJ, Zhang J, Kuan P-F, Galanko JA, O’Connell TM, Ilkayeva OR, Muehlbauer MJ, Stevens RD, Newgard CB, Brauer HA, Troester MA, Makowski L. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE. 2012;7(6):e38812. Aguila MB, editor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Totsch SK, Waite ME, Tomkovich A, Quinn TL, Gower BA, Sorge RE. Total Western diet alters mechanical and thermal sensitivity and prolongs hypersensitivity following complete Freund’s adjuvant in mice. J Pain Off J Am Pain Soc. 2016;17(1):119–25. PMCID: PMC4817348.

    Article  Google Scholar 

  64. Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, Dragoljevic D, Hong ES, Abdel-Latif A, Smyth SS, Choi SH, Korner J, Bornfeldt KE, Fisher EA, Dixit VD, Tall AR, Goldberg IJ, Murphy AJ. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 2014;19(5):821–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Towery P, Guffey JS, Doerflein C, Stroup K, Saucedo S, Taylor J. Chronic musculoskeletal pain and function improve with a plant-based diet. Complement Ther Med. 2018;40:64–9.

    Article  PubMed  Google Scholar 

  66. Silva AR, Bernardo A, Costa J, Cardoso A, Santos P, de Mesquita MF, Vaz Patto J, Moreira P, Silva ML, Padrão P. Dietary interventions in fibromyalgia: a systematic review. Ann Med. 2019;8:1–29.

    CAS  Google Scholar 

  67. Zeidan F, Vago DR. Mindfulness meditation-based pain relief: a mechanistic account. Ann N Y Acad Sci. 2016;1373(1):114–27. PMCID: PMC4941786.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lutz A, McFarlin DR, Perlman DM, Salomons TV, Davidson RJ. Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators. NeuroImage. 2013;64:538–46. PMCID: PMC3787201.

    Article  PubMed  Google Scholar 

  69. Taylor SL, Herman PM, Marshall NJ, Zeng Q, Yuan A, Chu K, Shao Y, Morioka C, Lorenz KA. Use of complementary and integrated health: a retrospective analysis of U.S. veterans with chronic musculoskeletal pain nationally. J Altern Complement Med. 2019;25(1):32–9.

    Article  PubMed  Google Scholar 

  70. Devan H, Farmery D, Peebles L, Grainger R. Evaluation of self-management support functions in apps for people with persistent pain: systematic review. JMIR MHealth UHealth. 2019;7(2):e13080. PMID: 30747715.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096–1258096.

    Article  CAS  Google Scholar 

  72. Dzau VJ, McNutt M, Bai C. Wake-up call from Hong Kong. Science. 2018;362(6420):1215–1215.

    Article  CAS  Google Scholar 

  73. Wang H, Li J, Li W, Gao C, Wei W. CRISPR twins: a condemnation from Chinese academic societies. Nature. 2018;564(7736):345–345.

    Article  CAS  Google Scholar 

  74. Sun L, Lutz BM, Tao Y-X. The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Perioper Pain Med. 2016;1(3):22–33. PMCID: PMC4971521.

    PubMed  PubMed Central  Google Scholar 

  75. Kumar N, Stanford W, de Solis C, Aradhana, Abraham ND, Dao T-MJ, Thaseen S, Sairavi A, Gonzalez CU, Ploski JE. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and cre-recombinase. Front Mol Neurosci [Internet]. 2018. [cited 2019 Feb 25];11. Available from: https://www.frontiersin.org/article/10.3389/fnmol.2018.00413/full.

  76. Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. 2014;17(2):153–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore J. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paige, C., Shiers, S., Price, T.J. (2020). The Future of Pain Therapeutics. In: Noe, C. (eds) Pain Management for Clinicians. Springer, Cham. https://doi.org/10.1007/978-3-030-39982-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39982-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39981-8

  • Online ISBN: 978-3-030-39982-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics