Skip to main content

Nano-Biosensors: NextGen Diagnostic Tools in Agriculture

  • Chapter
  • First Online:
Nanobiotechnology in Agriculture

Abstract

Nano-biosensors can play an important role in revolutionizing the agriculture through the development of next generation diagnostic tools and techniques. Recently, there has been a remarkable growth in the development of a wide range of biosensors which include electrochemical nanosensors, optical nanosensors, nano-barcode technology, e-Nose and e-Tongue, wireless nanosensors, and wireless sensor network. These biosensors are quite reliable, efficient, and economical in dealing various issues related to food, agriculture, and environment. Nano-biosensors and nano-based systems have some of the unique characteristics such as small size, portable, efficient, specific, sensitive, and relatively inexpensive that make them indispensable for the food and agricultural industries. Moreover, significant amount of research is being undertaken in diagnostics companies and research institutions to develop and improve biosensor technologies for the food and agricultural sector. This has enabled the development of nano-biosensors that can prove to be a very effective tool for smart delivery systems, promoting soil health and disease management. Nano-biosensors are also capable to detect seed viability, shelf life of fruits, and the amount of nutrients required by the plants. Besides, they play an important role in crop protection and promoting the concept of sustainable agriculture. Here, we summarize the recent developments in nano-biosensor technology and its potential role in the sustainable agricultural.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health Part B 47(3):226–231

    Article  CAS  Google Scholar 

  • Adak T, Kumar J, Shakil NA, Pandey S (2016) Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings: soybean seed quality enhancement by amphiphilic nano-polymers. J Sci Food Agric 96(13):4351–4357

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2016) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr 39(1):136–146

    Article  CAS  Google Scholar 

  • Antiochia R, Vinci G, Gorton L (2013) Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor. Food Chem 140(4):742–747. https://doi.org/10.1016/j.foodchem.2012.11.023

    Article  CAS  PubMed  Google Scholar 

  • ArunKumar M, Alagumeenaakshi M (2014) RPL optimization for precise greenhouse management using wireless sensor network. In: 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). IEEE, Piscataway

    Google Scholar 

  • Asha Chaubey BDM (2002) Mediated biosensors. Biosens Bioelectron 17:441–456

    Article  PubMed  Google Scholar 

  • Baldwin EA, Bai JH, Plotto A, Dea S (2011) Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors 11(5):4744–4766. https://doi.org/10.3390/s110504744

    Article  PubMed  PubMed Central  Google Scholar 

  • Chahine NO, Collette NM, Thomas BC, Genetos DC, Loots GG (2014) Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization. Tissue Eng Part A 20:2305–2315. https://doi.org/10.1089/ten.TEA.2013.0328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Yuan ZQ, Chang HT, Lu FN, Li ZH, Lu C (2016) Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Anal Methods 8(12):2628–2633. https://doi.org/10.1039/c6ay00214e

    Article  CAS  Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture. Springer International Publishing, Cham, pp 247–282

    Chapter  Google Scholar 

  • Choudhary MK, Singh M, Saharan V (2015) Applications of nanobiosensors in agriculture. Popular Kheti, Jodhpur. V (3), Issue-1 (January–March)

    Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): imaging and spectroscopic studies. Environ Sci 2:203–212. https://doi.org/10.1039/c4en00198b

    Article  CAS  Google Scholar 

  • Dasary SSR, Rai US, Yu HT, Anjaneyulu Y, Dubey M, Ray PC (2008) Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents. Chem Phys Lett 460(1–3):187–190. https://doi.org/10.1016/j.cplett.2008.05.082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dede S, Altay F (2018) Biosensors from the first generation to nano-biosensors. Int Adv Res Eng J 02(02):200–207

    Google Scholar 

  • Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) In Vitro. Biol Trace Elem Res 155(2):283–286

    Article  CAS  PubMed  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • El Maazouzi L, Castro S, Gil N, Alvarez J, Pesado J, Lamas JA, Campos I (2014) Contribution to precision agriculture using sap flow sensors and leaf wetness in wireless sensor network. Vii Congreso Iberico De Agroingenieria Y Ciencias Horticolas: Innovar Y Producir Para El Futuro. Innovating and Producing for the Future, pp 877–882

    Google Scholar 

  • Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Hianik T (2013) Impedimetric aptasensor for ochratoxin a determination based on au nanoparticles stabilized with hyper-branched polymer. Sens (Basel) 13(12):16129–16145

    Article  CAS  Google Scholar 

  • Ferri G, Alu M, Corradini B, Licata M, Beduschi G (2009) Species identification through DNA “barcodes”. Genet Test Mol Biomark 13(3):421–426. https://doi.org/10.1089/gtmb.2008.0144

    Article  CAS  Google Scholar 

  • Fogel R, Limson J (2016) Developing biosensors in developing countries: South Africa as a case study. Biosensors 6:5. https://doi.org/10.3390/bios6010005

    Article  CAS  PubMed Central  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234. https://doi.org/10.1166/jnn.2016.12332

    Article  CAS  PubMed  Google Scholar 

  • Guillen I, Gabaldon JA, Nunez-Delicado E, Puchades R, Maquieira A, Morais S (2011) Detection of sulphathiazole in honey samples using a lateral flow immunoassay. Food Chem 129(2):624–629. https://doi.org/10.1016/j.foodchem.2011.04.080

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Li J, Ma L, Peng Q, Feng W, Zhang L, He S, Yang F, Huang J, Li L (2010) High efficiency transport of quantum dots into plant roots with the aid of Silwet L-77. Plant Physiol Biochem 48(8):703–709. https://doi.org/10.1016/j.plaphy.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  • Hu LZ, Deng L, Alsaiari S, Zhang DY, Khashab NM (2014) “Light-on” sensing of antioxidants using gold nanoclusters. Anal Chem 86(10):4989–4994. https://doi.org/10.1021/ac500528m

    Article  CAS  PubMed  Google Scholar 

  • Huang CF, Yao GH, Liang RP, Qiu JD (2013) Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens Bioelectron 50:305–310. https://doi.org/10.1016/j.bios.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  • Huang XC, Yuan YH, Wang XY, Jiang FH, Yue TL (2015) Application of electronic nose in tandem with chemometric analysis for detection of Alicyclobacillus acidoterrestris-spawned spoilage in apple juice beverage. Food Bioprocess Technol 8(6):1295–1304. https://doi.org/10.1007/s11947-015-1491-2

    Article  CAS  Google Scholar 

  • Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 3(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Jones PBC (2014) A nanotech revolution in agriculture and the food industry. Information Systems for Biotechnology, Blacksburg. http://www.isb.vt.edu/articles/jun0605.htm

    Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the Detection and Diagnosis of Plant Pathogens. In: Ranjan S et al (eds) Nanoscience in Food and Agriculture 2, Sustainable Agriculture Reviews 21. Springer, Cham. https://doi.org/10.1007/978-3-319-39306-3_8

    Chapter  Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: Frontiers in precision agriculture. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 279–291

    Chapter  Google Scholar 

  • Kessler R (2011) Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 119(3):120–125

    Article  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785. https://doi.org/10.1080/13102818.2014.960739

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mehmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Ko D, Kwak Y, Song S (2014) Real time traceability and monitoring system for agricultural products based on wireless sensor network. Int J Distrib Sens Netw 10:832510. https://doi.org/10.1155/2014/832510

    Article  Google Scholar 

  • Kodali RK, Rawat N (2013) Wireless sensor network in mango farming. In: 2013 4th Nirma University International Conference on Engineering. IEEE, Piscataway

    Google Scholar 

  • Kuzma J, verHage P (2006) Nanotechnology in agriculture and food production: anticipated applications. In: The project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Li J, Shen C (2013) Energy conservative wireless sensor networks for black pepper monitoring in tropical area. In: 2013 IEEE global high tech congress on electronics. IEEE, Piscataway

    Google Scholar 

  • Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin KC, Hong CP, Chen SM (2013) Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes. Sens Actuators B-Chem 177:428–436. https://doi.org/10.1016/j.snb.2012.11.052

    Article  CAS  Google Scholar 

  • Liu RQ, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104

    Article  CAS  PubMed  Google Scholar 

  • Lloret J, Garcia M, Sendra S, Lloret G (2015) An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommun Syst 60(1):67–84. https://doi.org/10.1007/s11235-014-9922-3

    Article  Google Scholar 

  • Magalhaes ASG, Neto MPA, Bezerra MN, Feitosa JPA (2013) Superabsorbent hydrogel composite with minerals aimed at water sustainability. J Braz Chem Soc 24(2):304–313

    Article  CAS  Google Scholar 

  • Men H, Chen DL, Zhang XT, Liu JJ, Ning K (2014) Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. J Sens 2014:7. https://doi.org/10.1155/2014/840685

    Article  CAS  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nano-weapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107. https://doi.org/10.1007/s00253-014-6296-0

    Article  CAS  PubMed  Google Scholar 

  • Mohareb F, Papadopoulou O, Panagou E, Nychas GJ, Bessant C (2016) Ensemble-based support vector machine classifiers as an efficient tool for quality assessment of beef fillets from electronic nose data. Anal Methods 8(18):3711–3721. https://doi.org/10.1039/c6ay00147e

    Article  Google Scholar 

  • Montesano FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Sci Procedia 4:451–458

    Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nasirizadeh N, Hajihosseini S, Shekari Z, Ghaani M (2015) A novel electrochemical biosensor based on a modified gold electrode for hydrogen peroxide determination in different beverage samples. Food Anal Methods 8(6):1546–1555. https://doi.org/10.1007/s12161-014-0041-2

    Article  Google Scholar 

  • Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2016) Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens Bioelectron 77:1070–1077. https://doi.org/10.1016/j.bios.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nano encapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483. https://doi.org/10.1021/acs.jafc.5b05214

    Article  CAS  PubMed  Google Scholar 

  • Otles S, Yalcın B (2015) Strategic role of nanobiosensor in food: benefits and bottlenecks. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 169–182

    Google Scholar 

  • Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12(1):1–15

    Article  Google Scholar 

  • Pirzadah TB, Malik B, Maqbool T, Rehman RU (2019) Development of Nano-bioformulations of nutrients for sustainable agriculture. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Springer, Cham, pp 381–394. Nanotechnology in the Life Sciences

    Chapter  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413. https://doi.org/10.1016/j.chemosphere.2011.01.057

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotchnol 3:315–324

    Article  CAS  Google Scholar 

  • Ramesiah GN (2015) Nano fertilizers and nano sensors– an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):314–320

    Google Scholar 

  • Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci 36:62–69

    CAS  Google Scholar 

  • Sahota H, Kumar R, Kamal A (2011) A wireless sensor network for precision agriculture and its performance. Wirel Commun Mob Comput 11(12):1628–1645. https://doi.org/10.1002/wcm.1229

    Article  Google Scholar 

  • Savaliya R, Shah D, Singh R, Kumar A, Shanker R, Dhawan A, Singh S (2015) Nanotechnology in disease diagnostic techniques. Curr Drug Metab 16(8):645–661. https://doi.org/10.2174/1389200216666150625121546

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. https://doi.org/10.2147/NSA.S39406

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558. https://doi.org/10.3390/molecules24142558

    Article  CAS  PubMed Central  Google Scholar 

  • Shimojo T, Tashiro Y, Morito T, Suzuki M, Lee D, Kondo I, Fukuda N, Morikawa H (2013) A leaf area index visualization method using wireless sensor networks. In: 2013 Proceedings of SICE Annual Conference. IEEE, Nagoya, pp 2082–2087

    Google Scholar 

  • Singh RP, Choi JW (2010) Bio-nanomaterials for versatile biomolecules detection technology. Adv Mater Lett 1:83–84

    Article  CAS  Google Scholar 

  • Singh RP, Ashutosh T, Pandey AC (2011a) Silver/polyaniline nanocomposite for the electrocatalytic hydrazine oxidation. J Inorg Organomet Polym Mater 21:788–792

    Article  CAS  Google Scholar 

  • Singh RP, Kang DY, Choi JW (2011b) Nanofabrication of bio-self assembled monolayer and its electrochemical property for toxicant detection. J Nanosci Nanotechnol 11:408–412

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC (2011c) Biological approach of zinc oxide nanoparticles formation and its characterization. Adv Mater Lett 2:313–317

    Article  CAS  Google Scholar 

  • Singh A, Choudhary M, Singh MP, Verma HN, Singh SP, Arora K (2015) DNA functionalized direct electro-deposited gold nanoaggregates for efficient detection of Salmonella typhi. Bioelectrochemistry 105:7–15

    Article  CAS  PubMed  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 81–101

    Google Scholar 

  • Song MR, Cui SM, Gao F, Liu YR, Fan CL, Lei TQ, Liu DC (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37(3):258–260

    Article  CAS  Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2017) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16:161–182. https://doi.org/10.1007/s10311-017-0674-7

    Article  CAS  Google Scholar 

  • Torri L, Piochi M (2016) Sensory methods and electronic nose as innovative tools for the evaluation of the aroma transfer properties of food plastic bags. Food Res Int 85:235–243

    Article  PubMed  Google Scholar 

  • Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming - alternative source for water resources. Procedia Mater Sci 10:548–554

    Article  CAS  Google Scholar 

  • Wang JY, Wang H, He J, Li LL, Shen MG, Tan X, Zheng LR (2015) Wireless sensor network for real-time perishable food supply chain management. Comput Electron Agric 110:196–207

    Article  Google Scholar 

  • Wu SJ, Duan N, Shi Z, Fang CC, Wang ZP (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86

    Article  CAS  Google Scholar 

  • Xu Y, Ding J, Chen HY, Zhao Q, Hou J, Yan J, Ren NQ (2013) Fast determination of sulfonamides from egg samples using magnetic multi-walled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chem 140(1–2):83–90

    Article  CAS  PubMed  Google Scholar 

  • Yan JX, Guan HN, Yu J, Chi DF (2013) Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pestic Biochem Physiol 105(3):197–202

    Article  CAS  Google Scholar 

  • Yavuz S, Erkal A, Kariper IA, Solak AO, Jeon S, Mulazimoglu IE, Ustundag Z (2016) Carbonaceous materials-12: a novel highly sensitive graphene oxide-based carbon electrode: preparation, characterization, and heavy metal analysis in food samples. Food Anal Methods 9(2):322–331

    Article  Google Scholar 

  • Yu HC, Wang J, Xu Y (2007) Identification of adulterated milk using electronic nose. Sens Mater 19(5):275–285

    CAS  Google Scholar 

  • Zeng SW, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Carr DJ, Alocilja EC (2009) Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosens Bioelectron 24(5):1377–1381

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, F.A., Qazi, G., Pirzadah, T.B. (2020). Nano-Biosensors: NextGen Diagnostic Tools in Agriculture. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39978-8_7

Download citation

Publish with us

Policies and ethics