Skip to main content
Log in

One-pot reaction to synthesize superparamagnetic iron oxide nanoparticles by adding phenol as reducing agent and stabilizer

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An improved thermal decomposition method was used to directly prepare water-soluble Fe3O4 magnetic nanoparticles (MNPs) with relatively higher quality via reductive decomposition of ferric acetylacetonate [Fe(acac)3], in the presence of benzyl ether and phenol, in which inexpensive phenol acted as reducing agent and stabilizer, produce the semi phenol-benzoquinone coated on the Fe3O4 and make the Fe3O4·MNPs water-soluble and the colloidal solution stable. By changing the molar ratio of phenol to Fe(acac)3 and reaction time, the size of Fe3O4·MNPs could be varied from 19.3 ± 4.4 nm to 9.7 ± 1.5 nm, with the saturation magnetizations in the range of 51.3–62.9 emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study* 1. J Colloid Interf Sci 212(2):474–482

    Article  CAS  Google Scholar 

  • Bulte JWM, Miller GF, Vymazal J, Brooks RA, Frank JA (1997) Hepatic hemosiderosis in non©\human primates: quantification of liver iron using different field strengths. Magn Reson Med 37(4):530–536

    Article  CAS  Google Scholar 

  • Correa-Duarte MA, Giersig M, Kotov NA, Liz-Marzán LM (1998) Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir 14(22):6430–6435

    Article  CAS  Google Scholar 

  • Daou T, Pourroy G, Bgin-Colin S, Greneche J, Ulhaq-Bouillet C, Legar P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18(18):4399–4404

    Article  CAS  Google Scholar 

  • Ennas G, Musinu A, Piccaluga G, Zedda D, Gatteschi D, Sangregorio C, Stanger J, Concas G, Spano G (1998) Characterization of iron oxide nanoparticles in an Fe2O3–SiO2 composite prepared by a sol–gel method. Chem Mater 10(2):495–502

    Article  CAS  Google Scholar 

  • Family F, Vicsek T (1991) Dynamics of fractal surfaces. World Scientific Pub Co Inc, Singapore

    Google Scholar 

  • Godrèche C (1991) Solids far from Equilibrium, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Jung K, Jordan A, Wust P, Loening SA (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int J Hyperth 23(3):315–323. doi:10.1080/02656730601175479

    Article  CAS  Google Scholar 

  • Klug H, Alexander L (1962) X-ray diffraction procedures, 3rd edn. Wiley, New York

    Google Scholar 

  • Kodama R, Berkowitz A, McNiff EJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77(2):394–397

    Article  CAS  Google Scholar 

  • Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate©\immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792

    Article  CAS  Google Scholar 

  • Kumar RV, Diamant Y, Gedanken A (2000) Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater 12(8):2301–2305

    Article  CAS  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  Google Scholar 

  • Lee KB, Park S, Mirkin CA (2004) Multicomponent magnetic nanorods for biomolecular separations. Angew Chem 116(23):3110–3112

    Article  Google Scholar 

  • Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16(8):1391–1393

    Article  CAS  Google Scholar 

  • Li Z, Sun Q, Gao M (2005) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed 44(1):123–126

    Article  CAS  Google Scholar 

  • McCloskey KE, Chalmers JJ, Zborowski M (2003) Magnetic cell separation: characterization of magnetophoretic mobility. Anal Chem 75(24):6868–6874

    Article  CAS  Google Scholar 

  • Pascal C, Pascal J, Favier F, Moubtassim MLE, Payen C (1999) Electrochemical synthesis for the control of Ã-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147

    Article  CAS  Google Scholar 

  • Privman V (2009) Mechanisms of diffusional nucleation of nanocrystals and their self-assembly into uniform colloids. Ann N Y Acad Sci 1161(1):508–525

    Article  CAS  Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293

    Article  CAS  Google Scholar 

  • Robb DT, Privman V (2008) Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 24(1):26–35

    Article  CAS  Google Scholar 

  • Stanley HE, Family F, Gould H (1985) Kinetics of aggregation and gelation. Wiley Online Library, pp 19–37

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  CAS  Google Scholar 

  • Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N (2009) Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C 113(36):16002–16008

    Article  CAS  Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38(1):231–252

    Article  Google Scholar 

  • Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780

    Article  CAS  Google Scholar 

  • Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 20:2306–2307

    Article  Google Scholar 

  • Zhao W, Gu J, Zhang L, Chen H, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127(25):8916–8917

    Article  CAS  Google Scholar 

  • Zhao G, Xu JJ, Chen HY (2006) Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem Commun 8(1):148–154

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 81072308, No. 30840067), Shanghai Biomedicine Key Program (No. 10391901700, No. 08391911100), Shanghai Basic Research Key Program (No. 09JC1411500), the Innovation Program of Shanghai Municipal Education Commission (No. 09YZ170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlin Wei.

Additional information

Zhanwang Zhu contributed equally with Yuanfeng Wang, and are the co-first authors for this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhu, Z., Xu, F. et al. One-pot reaction to synthesize superparamagnetic iron oxide nanoparticles by adding phenol as reducing agent and stabilizer. J Nanopart Res 14, 755 (2012). https://doi.org/10.1007/s11051-012-0755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0755-2

Keywords

Navigation