Skip to main content

PET/CT and PET/MRI, Normal Variations, and Artifacts

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

Hybrid positron emission tomography/computed tomography (PET/CT) has emerged a pivotal role in cancer imaging in the last two decades. It allows simultaneous acquisition and assessment of metabolic and morphologic changes which lead to higher accuracy, reporter confidence, and cost-effectiveness when compared with stand-alone performance of each modality.

Various specific radiotracers such as 18F-FDG-, 18F-choline-, 11C-choline-, 18F-sodium fluoride, and the 68Ga-labeled peptide have been introduced in routine clinical practice depending on disease characteristics and the metabolic pathways of the cancerous tissues. However, tracer uptake is frequently not specific to a single pathologic process, and accurate interpretation of PET/CT requires the good knowledge of the normal distribution of different tracers and also incidental findings that are often encountered in clinical practice.

In the last few years, dedicated positron emission tomography/magnet resonance imaging (PET/MRI) has also become commercially available. Although the radiopharmaceutical-related physiologic uptakes and artifacts are mostly similar from PET/CT to PET/MRI, there are different technical artifacts which should be considered for accurate interpretation.

In this chapter, we provide a review concerning the physiologic uptakes of common radiotracers and benign findings in a specific order based on different parts of the body, head and neck, thorax, abdomen, and pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  2. Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A. 2011;648(Suppl 1):S236–40.

    Article  CAS  PubMed  Google Scholar 

  3. Boellaard R, Oyen WJ, Hoekstra CJ, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35(12):2320–33.

    Article  PubMed  Google Scholar 

  4. Corrigan AJ, Schleyer PJ, Cook GJ. Pitfalls and artifacts in the use of PET/CT in oncology imaging. Semin Nucl Med. 2015;45(6):481–99.

    Article  PubMed  Google Scholar 

  5. Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009;50(8):1315–23.

    Article  PubMed  Google Scholar 

  6. Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging. 2003;30(4):603–6.

    Article  PubMed  Google Scholar 

  7. Erdi YE, Nehmeh SA, Pan T, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45(8):1287–92.

    PubMed  Google Scholar 

  8. Liu C, Pierce LA 2nd, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54(24):7345–62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pan T, Mawlawi O, Luo D, et al. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT. Med Phys. 2006;33(10):3931–8.

    Article  PubMed  Google Scholar 

  10. Nehmeh SA, Haj-Ali AA, Qing C, et al. A novel respiratory tracking system for smart-gated PET acquisition. Med Phys. 2011;38(1):531–8.

    Article  CAS  PubMed  Google Scholar 

  11. Liu C, Alessio A, Pierce L, et al. Quiescent period respiratory gating for PET/CT. Med Phys. 2010;37(9):5037–43.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nehmeh SA, Erdi YE, Pan T, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys. 2004;31(12):3179–86.

    Article  CAS  PubMed  Google Scholar 

  13. Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med. 2004;45(Suppl 1):56S–65S.

    CAS  PubMed  Google Scholar 

  14. Antoch G, Freudenberg LS, Egelhof T, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med. 2002;43(10):1339–42.

    PubMed  Google Scholar 

  15. Beyer T, Antoch G, Muller S, et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med. 2004;45(Suppl 1):25S–35S.

    PubMed  Google Scholar 

  16. Mawlawi O, Erasmus JJ, Pan T, et al. Truncation artifact on PET/CT: impact on measurements of activity concentration and assessment of a correction algorithm. AJR Am J Roentgenol. 2006;186(5):1458–67.

    Article  PubMed  Google Scholar 

  17. Pike L. Quality assurance of PET and PET/CT systems, vol. 108. York: Institute of Physics and Engineering in Medicine; 2013.

    Google Scholar 

  18. Delso G, ter Voert E, de Galiza Barbosa F, Veit-Haibach P. Pitfalls and limitations in simultaneous PET/MRI. Semin Nucl Med. 2015;45(6):552–9.

    Article  PubMed  Google Scholar 

  19. Bhargava P, Rahman S, Wendt J. Atlas of confounding factors in head and neck PET/CT imaging. Clin Nucl Med. 2011;36(5):e20–9.

    Article  PubMed  Google Scholar 

  20. Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M. FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging. 2014;5(5):585–602.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karunanithi S, Soundararajan R, Sharma P, Naswa N, Bal C, Kumar R. Spectrum of physiologic and pathologic skeletal muscle (18)F-FDG uptake on PET/CT. AJR Am J Roentgenol. 2015;205(2):W141–9.

    Article  PubMed  Google Scholar 

  22. Nakamura S, Okochi K, Murata Y, Shibuya H, Kurabayashi T. [18F]Fluorodeoxyglucose-PET/CT differentiation between physiological and pathological accumulations in head and neck. Nucl Med Commun. 2009;30(7):498–503.

    Article  PubMed  Google Scholar 

  23. Tsubaki F, Kurata S, Tani J, Sumi A, Fujimoto K, Abe T. Clinical significance of patterns of increased [(18)F]-FDG uptake in the thyroid gland: a pictorial review. Jpn J Radiol. 2018;36(3):181–93.

    Article  PubMed  Google Scholar 

  24. Makis W, Ciarallo A. Thyroid Incidentalomas on (18)F-FDG PET/CT: clinical significance and controversies. Mol Imaging Radionucl Ther. 2017;26(3):93–100.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Steinberg JD, Vogel W, Vegt E. Factors influencing brown fat activation in FDG PET/CT: a retrospective analysis of 15,000+ cases. Br J Radiol. 2017;90(1075):20170093.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tatsumi M, Engles JM, Ishimori T, Nicely O, Cohade C, Wahl RL. Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med. 2004;45(7):1189–93.

    CAS  PubMed  Google Scholar 

  27. Sureshbabu W, Mawlawi O. PET/CT imaging artifacts. J Nucl Med Technol. 2005;33(3):156–61; quiz 163–154.

    PubMed  Google Scholar 

  28. Wachsmann JW, Gerbaudo VH. Thorax: normal and benign pathologic patterns in FDG-PET/CT imaging. PET Clin. 2014;9(2):147–68.

    Article  PubMed  Google Scholar 

  29. An YS, Jung Y, Kim JY, et al. Metabolic activity of Normal glandular tissue on (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography: correlation with menstrual cycles and parenchymal enhancements. J Breast Cancer. 2017;20(4):386–92.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dong A, Wang Y, Lu J, Zuo C. Spectrum of the breast lesions with increased 18F-FDG uptake on PET/CT. Clin Nucl Med. 2016;41(7):543–57.

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Vliet KE, de Jong VM, Termaat MF, et al. FDG-PET/CT for differentiating between aseptic and septic delayed union in the lower extremity. Arch Orthop Trauma Surg. 2018;138(2):189–94.

    Article  PubMed  Google Scholar 

  32. Osman MM, Tran IT, Muzaffar R, Parkar N, Sachdeva A, Ruppel GL. Does (1)(8)F-FDG uptake by respiratory muscles on PET/CT correlate with chronic obstructive pulmonary disease? J Nucl Med Technol. 2011;39(4):252–7.

    Article  PubMed  Google Scholar 

  33. Gerbaudo VH, Julius B. Anatomo-metabolic characteristics of atelectasis in F-18 FDG-PET/CT imaging. Eur J Radiol. 2007;64(3):401–5.

    Article  PubMed  Google Scholar 

  34. Shusharina N, Liao Z, Mohan R, et al. Differences in lung injury after IMRT or proton therapy assessed by (18)FDG PET imaging. Radiother Oncol. 2018;128:147.

    Article  PubMed  Google Scholar 

  35. Chen CH, Hsiao CC, Chen YC, et al. Rebound thymic hyperplasia after chemotherapy in children with lymphoma. Pediatr Neonatol. 2017;58(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  36. Maurer AH, Burshteyn M, Adler LP, Steiner RM. How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics. 2011;31(5):1287–305.

    Article  PubMed  Google Scholar 

  37. Toriihara A, Kitazume Y, Nishida H, Kubota K, Nakadate M, Tateishi U. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls. Am J Nucl Med Mol Imaging. 2015;5(2):204–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jo K, Kim S, Cha J, et al. A comparison study of esophageal findings on (18)F-FDG PET/CT and esophagogastroduodenoscopy. Nucl Med Mol Imaging. 2016;50(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  39. Blodgett TM, Mehta AS, Mehta AS, Laymon CM, Carney J, Townsend DW. PET/CT artifacts. Clin Imaging. 2011;35(1):49–63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Fontaine K, Mulnix T, et al. Respiratory motion compensation for PET/CT with motion information derived from matched attenuation corrected gated PET data. J Nucl Med. 2018;59:1480.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Robin P, Bourhis D, Bernard B, et al. Feasibility of systematic respiratory-gated acquisition in unselected patients referred for (18)F-fluorodeoxyglucose positron emission tomography/computed tomography. Front Med. 2018;5:36.

    Article  Google Scholar 

  42. Zukotynski K, Kim CK. Abdomen: normal variations and benign conditions resulting in uptake on FDG-PET/CT. PET Clin. 2014;9(2):169–83.

    Article  PubMed  Google Scholar 

  43. Shmidt E, Nehra V, Lowe V, Oxentenko AS. Clinical significance of incidental [18 F]FDG uptake in the gastrointestinal tract on PET/CT imaging: a retrospective cohort study. BMC Gastroenterol. 2016;16(1):125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kunawudhi A, Wong AK, Alkasab TK, Mahmood U. Accuracy of FDG-PET/CT for detection of incidental pre-malignant and malignant colonic lesions – correlation with colonoscopic and histopathologic findings. Asian Pac J Cancer Prev. 2016;17(8):4143–7.

    PubMed  Google Scholar 

  45. Lee JC, Hartnett GF, Hughes BG, Ravi Kumar AS. The segmental distribution and clinical significance of colorectal fluorodeoxyglucose uptake incidentally detected on PET-CT. Nucl Med Commun. 2009;30(5):333–7.

    Article  CAS  PubMed  Google Scholar 

  46. Lakhani A, Khan SR, Bharwani N, et al. FDG PET/CT pitfalls in gynecologic and genitourinary oncologic imaging. Radiographics. 2017;37(2):577–94.

    Article  PubMed  Google Scholar 

  47. Zukotynski K, Lewis A, O'Regan K, et al. PET/CT and renal pathology: a blind spot for radiologists? Part 1, primary pathology. AJR Am J Roentgenol. 2012;199(2):W163–7.

    Article  PubMed  Google Scholar 

  48. Zukotynski K, Lewis A, O'Regan K, et al. PET/CT and renal pathology: a blind spot for radiologists? Part 2—lymphoma, leukemia, and metastatic disease. AJR Am J Roentgenol. 2012;199(2):W168–74.

    Article  PubMed  Google Scholar 

  49. Kim SJ, Lee SW, Pak K, Kim IJ, Kim K. Diagnostic accuracy of (18)F-FDG PET or PET/CT for the characterization of adrenal masses: a systematic review and meta-analysis. Br J Radiol. 2018;91(1086):20170520.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yun M, Kim W, Alnafisi N, Lacorte L, Jang S, Alavi A. 18F-FDG PET in characterizing adrenal lesions detected on CT or MRI. J Nucl Med. 2001;42(12):1795–9.

    CAS  PubMed  Google Scholar 

  51. Koffert JP, Mikkola K, Virtanen KA, et al. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: results from a randomized clinical trial. Diabetes Res Clin Pract. 2017;131:208–16.

    Article  CAS  PubMed  Google Scholar 

  52. Bahler L, Stroek K, Hoekstra JB, Verberne HJ, Holleman F. Metformin-related colonic glucose uptake; potential role for increasing glucose disposal? A retrospective analysis of (18)F-FDG uptake in the colon on PET-CT. Diabetes Res Clin Pract. 2016;114:55–63.

    Article  CAS  PubMed  Google Scholar 

  53. Steenkamp DW, McDonnell ME, Meibom S. Metformin may be associated with false-negative cancer detection in the gastrointestinal tract on PET/CT. Endocr Pract. 2014;20(10):1079–83.

    Article  PubMed  Google Scholar 

  54. Lee SH, Jin S, Lee HS, Ryu JS, Lee JJ. Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel. Ann Nucl Med. 2016;30(9):629–36.

    Article  CAS  PubMed  Google Scholar 

  55. Basu S, Baghel NS. Intense FDG uptake in the spleen due to recent granulocyte-macrophage colony-stimulating factor administration: follow-up scan clarifying the situation. J Cancer Res Ther. 2011;7(2):228–9.

    Article  PubMed  Google Scholar 

  56. Liu Y. Clinical significance of diffusely increased splenic uptake on FDG-PET. Nucl Med Commun. 2009;30(10):763–9.

    Article  PubMed  Google Scholar 

  57. Wang X, Koch S. Positron emission tomography/computed tomography potential pitfalls and artifacts. Curr Probl Diagn Radiol. 2009;38(4):156–69.

    Article  PubMed  Google Scholar 

  58. Kohan A, Avril NE. Pelvis: normal variants and benign findings in FDG-PET/CT imaging. PET Clin. 2014;9(2):185–93.

    Article  PubMed  Google Scholar 

  59. Ozulker T, Ozulker F, Mert M, Ozpacaci T. Clearance of the high intestinal (18)F-FDG uptake associated with metformin after stopping the drug. Eur J Nucl Med Mol Imaging. 2010;37(5):1011–7.

    Article  PubMed  CAS  Google Scholar 

  60. Buscombe JR. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET). Br J Radiol. 2015;88(1053):20140648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bucci M, Aparici CM, Hawkins R, et al. Validation of FDG uptake in the arterial wall as an imaging biomarker of atherosclerotic plaques with 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). J Neuroimaging. 2014;24(2):117–23.

    Article  PubMed  Google Scholar 

  62. Beauregard JM, Blouin AC, Fradet V, et al. FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging. 2015;15:2.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dierickx LO, Huyghe E, Nogueira D, et al. Functional testicular evaluation using PET/CT with 18F-fluorodeoxyglucose. Eur J Nucl Med Mol Imaging. 2012;39(1):129–37.

    Article  CAS  PubMed  Google Scholar 

  64. Moon SH, Eo JS, Lee JJ, Chung JK, Lee DS, Lee MC. (18)F-FDG uptake of human testis on PET/CT: correlation with age, sex hormones, and vasectomy. Nucl Med Mol Imaging. 2011;45(4):291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Well D, Yang H, Houseni M, et al. Age-related structural and metabolic changes in the pelvic reproductive end organs. Semin Nucl Med. 2007;37(3):173–84.

    Article  PubMed  Google Scholar 

  66. Groheux D, Teyton P, Vercellino L, Ferretti A, Rubello D, Hindie E. Cryptorchidism as a potential source of misinterpretation in (1)(8)FDG-PET imaging in restaging lymphoma patients. Biomed Pharmacother. 2013;67(6):533–8.

    Article  PubMed  Google Scholar 

  67. Liu Y. Benign ovarian and endometrial uptake on FDG PET-CT: patterns and pitfalls. Ann Nucl Med. 2009;23(2):107–12.

    Article  CAS  PubMed  Google Scholar 

  68. Park SA, Lee KM, Choi U, Kim HS, Kim HW, Song JH. Normal physiologic and benign foci with F-18 FDG avidity on PET/CT in patients with breast cancer. Nucl Med Mol Imaging. 2010;44(4):282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yun M, Cho A, Lee JH, Choi YJ, Lee JD, Kim CK. Physiologic 18F-FDG uptake in the fallopian tubes at mid cycle on PET/CT. J Nucl Med. 2010;51(5):682–5.

    Article  PubMed  Google Scholar 

  70. Schwarz EI, Ramach C, Mende KA, Strobel K. Physiologic FDG uptake in the ovary together with an abdominal wall leiomyoma mimicking metastasizing ovarian cancer on PET/CT imaging. Clin Nucl Med. 2009;34(4):249–50.

    Article  PubMed  Google Scholar 

  71. Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9(2):129–40.

    Article  PubMed  Google Scholar 

  72. Ahmad Sarji S. Physiological uptake in FDG PET simulating disease. Biomed Imaging Intervent J. 2006;2(4):e59.

    Article  CAS  Google Scholar 

  73. Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24(5):1411–31.

    Article  PubMed  Google Scholar 

  74. London K, Howman-Giles R. Normal cerebral FDG uptake during childhood. Eur J Nucl Med Mol Imaging. 2014;41(4):723–35.

    Article  CAS  PubMed  Google Scholar 

  75. Willis MW, Ketter TA, Kimbrell TA, et al. Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res. 2002;114(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  76. Chiaravalloti A, Barbagallo G, Ricci M, et al. Brain metabolic correlates of CSF tau protein in a large cohort of Alzheimer’s disease patients: a CSF and FDG PET study. Brain Res. 2018;1678:116–22.

    Article  CAS  PubMed  Google Scholar 

  77. Croteau E, Castellano CA, Fortier M, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol. 2018;107:18–26.

    Article  CAS  PubMed  Google Scholar 

  78. Silva-Rodriguez J, Garcia-Varela L, Lopez-Arias E, et al. Impact of benzodiazepines on brain FDG-PET quantification after single-dose and chronic administration in rats. Nucl Med Biol. 2016;43(12):827–34.

    Article  CAS  PubMed  Google Scholar 

  79. Scholtens AM, Verberne HJ. Attenuation correction and metal artifact reduction in FDG PET/CT for prosthetic heart valve and cardiac implantable device endocarditis. J Nucl Cardiol. 2018;25:2172.

    Article  PubMed  Google Scholar 

  80. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42(12):1805–14.

    CAS  PubMed  Google Scholar 

  81. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43(2):187–99.

    CAS  PubMed  Google Scholar 

  82. Friedland RP, Mathis CA, Budinger TF, Moyer BR, Rosen M. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication. J Nucl Med. 1983;24(9):812–5.

    CAS  PubMed  Google Scholar 

  83. Beheshti M, Haroon A, Bomanji JB, Langsteger W, Fluorocholine PET. Computed tomography: physiologic uptake, benign findings, and pitfalls. PET Clin. 2014;9(3):299–306.

    Article  PubMed  Google Scholar 

  84. Mertens K, Ham H, Deblaere K, et al. Distribution patterns of 18F-labelled fluoromethylcholine in normal structures and tumors of the head: a PET/MRI evaluation. Clin Nucl Med. 2012;37(8):e196–203.

    Article  PubMed  Google Scholar 

  85. Calabria F, Chiaravalloti A, Schillaci O. (18)F-choline PET/CT pitfalls in image interpretation: an update on 300 examined patients with prostate cancer. Clin Nucl Med. 2014;39(2):122–30.

    Article  PubMed  Google Scholar 

  86. Schillaci O, Calabria F, Tavolozza M, et al. 18F-choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer, Nucl Med Commun. 2019;31(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  87. Beheshti M, Hehenwarter L, Paymani Z, et al. (18)F-fluorocholine PET/CT in the assessment of primary hyperparathyroidism compared with (99m)Tc-MIBI or (99m)Tc-tetrofosmin SPECT/CT: a prospective dual-centre study in 100 patients. Eur J Nucl Med Mol Imaging. 2018;45:1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wyss MT, Weber B, Honer M, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging. 2004;31(3):312–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gu J. Primary liver cancer: challenges and perspectives. New York, NY: Springer; 2012.

    Book  Google Scholar 

  90. de Certaines JD, Larsen VA, Podo F, Carpinelli G, Briot O, Henriksen O. In vivo 31P MRS of experimental tumours. NMR Biomed. 1993;6(6):345–65.

    Article  PubMed  Google Scholar 

  91. Sutinen E, Nurmi M, Roivainen A, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  92. Terauchi T, Tateishi U, Maeda T, et al. A case of colon cancer detected by carbon-11 choline positron emission tomography/computed tomography: an initial report. Jpn J Clin Oncol. 2007;37(10):797–800.

    Article  PubMed  Google Scholar 

  93. Katz DS, Hines J, Math KR, Nardi PM, Mindelzun RE, Lane MJ. Using CT to reveal fat-containing abnormalities of the pancreas. AJR Am J Roentgenol. 1999;172(2):393–6.

    Article  CAS  PubMed  Google Scholar 

  94. Beheshti M, Haim S, Zakavi R, et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med. 2013;54(6):833–40.

    Article  CAS  PubMed  Google Scholar 

  95. Beheshti M, Imamovic L, Broinger G, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254(3):925–33.

    Article  PubMed  Google Scholar 

  96. Ceci F, Castellucci P, Mamede M, et al. (11)C-choline PET/CT in patients with hormone-resistant prostate cancer showing biochemical relapse after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2012;40(2):149–55.

    Article  PubMed  CAS  Google Scholar 

  97. Roef MJ, van der Poel H, van der Laken CJ, Vogel WV. Colchicine must be stopped before imaging with [18F]-methylcholine PET/CT, Nucl Med Commun. 2010;31(12):1075–7.

    Google Scholar 

  98. Haroon A, Zanoni L, Celli M, et al. Multicenter study evaluating extraprostatic uptake of 11C-choline, 18F-methylcholine, and 18F-ethylcholine in male patients: physiological distribution, statistical differences, imaging pearls, and normal variants. Nucl Med Commun. 2015;36(11):1065–75.

    Article  CAS  PubMed  Google Scholar 

  99. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene. 2000;19(45):5173–81.

    Article  CAS  PubMed  Google Scholar 

  100. Swinnen JV, Van Veldhoven PP, Timmermans L, et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun. 2003;302(4):898–903.

    Article  CAS  PubMed  Google Scholar 

  101. Grassi I, Nanni C, Allegri V, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.

    CAS  PubMed  Google Scholar 

  102. Ohtsuka T, Nomori H, Watanabe K, et al. Positive imaging of thymoma by 11C-acetate positron emission tomography. Ann Thorac Surg. 2006;81(3):1132–4.

    Article  PubMed  Google Scholar 

  103. Lee SM, Kim TS, Kim SK. Cerebellopontine angle schwannoma on C-11 acetate PET/CT. Clin Nucl Med. 2009;34(11):831–3.

    Article  PubMed  Google Scholar 

  104. Ho CL, Chen S, Ho KM, Ng WK, Leung YL, Cheng TK. 11C-acetate PET/CT in multicentric angiomyolipoma of the kidney. Clin Nucl Med. 2011;36(5):407–8.

    Article  PubMed  Google Scholar 

  105. Wang HC, Zhao J, Zuo CT, et al. Encephalitis depicted by a combination of C-11 acetate and F-18 FDG PET/CT. Clin Nucl Med. 2009;34(12):952–4.

    Article  PubMed  Google Scholar 

  106. Lee SM, Kim TS, Lee JW, et al. Incidental finding of an 11C-acetate PET-positive multiple myeloma. Ann Nucl Med. 2010;24(1):41–4.

    Article  PubMed  Google Scholar 

  107. Liu RS, Chang CP, Guo WY, et al. 1-11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. J Nucl Med. 2010;51(6):883–91.

    Article  PubMed  Google Scholar 

  108. Buchegger F, Garibotto V, Zilli T, et al. First imaging results of an intraindividual comparison of (11)C-acetate and (18)F-fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41(1):68–78.

    Article  CAS  PubMed  Google Scholar 

  109. Wachter S, Tomek S, Kurtaran A, et al. 11C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol. 2006;24(16):2513–9.

    Article  PubMed  Google Scholar 

  110. Yeh SH, Liu RS, Wu LC, Yen SH, Chang CW, Chen KY. 11C-acetate clearance in nasopharyngeal carcinoma. Nucl Med Commun. 1999;20(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  111. Sun A, Sorensen J, Karlsson M, et al. 1-[11C]-acetate PET imaging in head and neck cancer—a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging. 2007;34(5):651–7.

    Article  PubMed  Google Scholar 

  112. Nomori H, Shibata H, Uno K, et al. 11C-acetate can be used in place of 18F-fluorodeoxyglucose for positron emission tomography imaging of non-small cell lung cancer with higher sensitivity for well-differentiated adenocarcinoma. J Thorac Oncol. 2008;3(12):1427–32.

    Article  PubMed  Google Scholar 

  113. Karanikas G, Beheshti M. (1)(1)C-acetate PET/CT imaging: physiologic uptake, variants, and pitfalls. PET Clin. 2014;9(3):339–44.

    Article  PubMed  Google Scholar 

  114. Shreve PD, Gross MD. Imaging of the pancreas and related diseases with PET carbon-11-acetate. J Nucl Med. 1997;38(8):1305–10.

    CAS  PubMed  Google Scholar 

  115. Huo L, Wu Z, Zhuang H, Fu Z, Dang Y. Dual time point C-11 acetate PET imaging can potentially distinguish focal nodular hyperplasia from primary hepatocellular carcinoma. Clin Nucl Med. 2009;34(12):874–7.

    Article  PubMed  Google Scholar 

  116. Brogsitter C, Zöphel K, Kotzerke J. 18 F-choline, 11 C-choline and 11 C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40(1):18–27.

    Article  CAS  Google Scholar 

  117. Karanikas G, Beheshti M. 11C-acetate PET/CT imaging: physiologic uptake, variants, and pitfalls. PET Clin. 2014;9(3):339–44.

    Article  PubMed  Google Scholar 

  118. Schöder H, Ong SC, Reuter VE, et al. Initial results with 11 C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol. 2012;14(2):245–51.

    Article  PubMed  Google Scholar 

  119. Luxen A, Guillaume M, Melega W, Pike V, Solin O, Wagner R. Production of 6-[18F] fluoro-L-dopa and its metabolism in vivo—a critical review. Int J Radiat Appl Instrum B Nucl Med Biol. 1992;19(2):149–58.

    Article  CAS  Google Scholar 

  120. Kauhanen S, Seppänen M, Ovaska J, et al. The clinical value of [18F] fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer. 2009;16(1):255–65.

    Article  CAS  PubMed  Google Scholar 

  121. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48(9):1468–81.

    Article  PubMed  Google Scholar 

  122. Kauhanen S, Seppanen M, Minn H, et al. Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) positron emission tomography as a tool to localize an insulinoma or β-cell hyperplasia in adult patients. J Clin Endocrinol Metabol. 2007;92(4):1237–44.

    Article  CAS  Google Scholar 

  123. Chondrogiannis S, Marzola MC, Rubello D. 18F-DOPA PET/computed tomography imaging. PET Clin. 2014;9(3):307–21.

    Article  PubMed  Google Scholar 

  124. Chondrogiannis S, Grassetto G, Marzola MC, et al. 18F-DOPA PET/CT biodistribution consideration in 107 consecutive patients with neuroendocrine tumours. Nucl Med Commun. 2012;33(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  125. Koopmans KP, de Vries EG, Kema IP, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006;7(9):728–34.

    Article  CAS  PubMed  Google Scholar 

  126. Timmers H, Hadi M, Carrasquillo JA, et al. The effects of carbidopa on uptake of 6-18F-fluoro-L-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucl Med. 2007;48(10):1599–606.

    Article  CAS  PubMed  Google Scholar 

  127. Kauhanen SSM, Nuutila P. Premedication with carbidopa masks positive finding of insulinoma and beta-cell hyperplasia in [(18)F]-dihydroxy-phenyl-alanine positron emission tomography. J Clin Oncol. 2008;26(32):5307–8.

    Article  PubMed  Google Scholar 

  128. Krenning E, Kwekkeboom DJ, Wea B, et al. Somatostatin receptor scintigraphy with [111 in-DTPA-D-Phe 1]-and [123 I-Tyr 3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.

    Article  CAS  PubMed  Google Scholar 

  129. Ambrosini V, Nanni C, Fanti S. The use of gallium-68 labeled somatostatin receptors in PET/CT imaging. PET Clin. 2014;9(3):323–9.

    Article  PubMed  Google Scholar 

  130. Prasad V, Ambrosini V, Hommann M, Hoersch D, Fanti S, Baum RP. Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68 Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging. 2010;37(1):67.

    Article  CAS  PubMed  Google Scholar 

  131. Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68 Ga-DOTA-conjugated peptides: 68 Ga-DOTA-TOC, 68 Ga-DOTA-NOC, 68 Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37(10):2004–10.

    Article  PubMed  Google Scholar 

  132. Prasad V, Baum R. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging. 2010;54(1):61–7.

    CAS  PubMed  Google Scholar 

  133. Hofman MS, Lau WE, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500–16.

    Article  PubMed  Google Scholar 

  134. Agrawal K, Esmail AA, Gnanasegaran G, Navalkissoor S, Mittal BR, Fogelman I. Pitfalls and limitations of radionuclide imaging in endocrinology. Paper presented at seminars in nuclear medicine, 2015.

    Google Scholar 

  135. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48(4):508–18.

    Article  CAS  PubMed  Google Scholar 

  136. Castellucci P, Pou Ucha J, Fuccio C, et al. Incidence of increased 68Ga-DOTANOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J Nucl Med. 2011;52(6):886.

    Article  PubMed  Google Scholar 

  137. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in Functional Imaging of Neuroendocrine Tumors. J Nucl Med. 2011;52(12):1864.

    Article  CAS  PubMed  Google Scholar 

  138. Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500–16.

    Article  PubMed  Google Scholar 

  139. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52(4):637–40.

    Article  CAS  PubMed  Google Scholar 

  140. Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009;15(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  141. Uprimny C, Kroiss AS, Decristoforo C, et al. 68 Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44(6):941–9.

    Article  CAS  PubMed  Google Scholar 

  142. Maurer T, Gschwend JE, Rauscher I, et al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–43.

    Article  PubMed  Google Scholar 

  143. Beheshti M, Paymani Z, Brilhante J, et al. Optimal time-point for 68 Ga-PSMA-11 PET/CT imaging in assessment of prostate cancer: feasibility of sterile cold-kit tracer preparation? Eur J Nucl Med Mol Imaging. 2018;45:1188–96.

    Article  CAS  PubMed  Google Scholar 

  144. Caroli P, Sandler I, Matteucci F, et al. 68 Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients. Eur J Nucl Med Mol Imaging. 2018;45:2035–44.

    Article  CAS  PubMed  Google Scholar 

  145. Perera M, Papa N, Christidis D, et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(6):926–37.

    Article  PubMed  Google Scholar 

  146. Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68 Ga] gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95.

    Article  CAS  PubMed  Google Scholar 

  147. Fendler WP, Eiber M, Beheshti M, et al. 68 Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44(6):1014–24.

    Article  PubMed  Google Scholar 

  148. Beheshti M, Rezaee A, Langsteger W. 68Ga-PSMA-HBED uptake on cervicothoracic (stellate) ganglia, a common pitfall on PET/CT. Clin Nucl Med. 2017;42(3):195–6.

    Article  PubMed  Google Scholar 

  149. Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):81–5.

    CAS  PubMed  Google Scholar 

  150. Krohn T, Verburg FA, Pufe T, et al. [68 Ga] PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging. 2015;42(2):210–4.

    Article  PubMed  Google Scholar 

  151. Wright Jr GL, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Paper presented at urologic oncology: seminars and original investigations, 1995.

    Article  PubMed  Google Scholar 

  152. Schmuck S, Mamach M, Wilke F, et al. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer: value of early dynamic and delayed imaging. Clin Nucl Med. 2017;42(6):e286–93.

    Article  PubMed  Google Scholar 

  153. Hillier SM, Kern AM, Maresca KP, et al. 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med. 2011;52(7):1087.

    Article  CAS  PubMed  Google Scholar 

  154. Schmidkonz C, Cordes M, Schmidt D, et al. 68 Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:1862–72.

    Article  PubMed  Google Scholar 

  155. Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903–12.

    Article  CAS  PubMed  Google Scholar 

  156. Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46(6):945–52.

    CAS  PubMed  Google Scholar 

  157. Choi SJ, Kim JS, Kim JH, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32(6):653–9.

    Article  PubMed  Google Scholar 

  158. Troost EG, Vogel WV, Merkx MA, et al. 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med. 2007;48(5):726–35.

    Article  PubMed  Google Scholar 

  159. Buck AK, Herrmann K, Shen C, Dechow T, Schwaiger M, Wester HJ. Molecular imaging of proliferation in vivo: positron emission tomography with [18F]fluorothymidine. Methods. 2009;48(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  160. Buck AK, Bommer M, Stilgenbauer S, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61.

    Article  CAS  PubMed  Google Scholar 

  161. Agool A, Slart RH, Kluin PM, de Wolf JT, Dierckx RA, Vellenga E. F-18 FLT PET: a noninvasive diagnostic tool for visualization of the bone marrow compartment in patients with aplastic anemia: a pilot study. Clin Nucl Med. 2011;36(4):286–9.

    Article  PubMed  Google Scholar 

  162. Gray KR, Contractor KB, Kenny LM, et al. Kinetic filtering of [(18)F]Fluorothymidine in positron emission tomography studies. Phys Med Biol. 2010;55(3):695–709.

    Article  CAS  PubMed  Google Scholar 

  163. Herrmann K, Buck AK. Proliferation imaging with 18F-fluorothymidine PET/computed tomography: physiologic uptake, variants, and pitfalls. PET Clin. 2014;9(3):331–8.

    Article  PubMed  Google Scholar 

  164. Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46(2):371–80.

    CAS  PubMed  Google Scholar 

  165. Shields AF, Briston DA, Chandupatla S, et al. A simplified analysis of [18F]3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging. 2005;32(11):1269–75.

    Article  CAS  PubMed  Google Scholar 

  166. Visvikis D, Francis D, Mulligan R, et al. Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer. Eur J Nucl Med Mol Imaging. 2004;31(2):169–78.

    Article  CAS  PubMed  Google Scholar 

  167. Kameyama R, Yamamoto Y, Izuishi K, et al. Detection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2009;36(3):382–8.

    Article  PubMed  Google Scholar 

  168. Herrmann K, Ott K, Buck AK, et al. Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med. 2007;48(12):1945–50.

    Article  CAS  PubMed  Google Scholar 

  169. Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S.

    Article  CAS  PubMed  Google Scholar 

  170. Herrmann K, Wieder HA, Buck AK, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res. 2007;13(12):3552–8.

    Article  CAS  PubMed  Google Scholar 

  171. Everitt S, Hicks RJ, Ball D, et al. Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;75(4):1098–104.

    Article  PubMed  Google Scholar 

  172. Liu G, Jeraj R, Vanderhoek M, et al. Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with sunitinib malate. Clin Cancer Res. 2011;17(24):7634–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Blake GM, Park-Holohan S-J, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Paper presented at seminars in nuclear medicine, 2001.

    Google Scholar 

  174. Hoh CK, Hawkins RA, Dahlbom M, et al. Whole body skeletal imaging with [18F] fluoride ion and PET. J Comput Assist Tomogr. 1993;17(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  175. Narita N, Kato K, Nakagaki H, Ohno N, Kameyama Y, Weatherell JA. Distribution of fluoride concentration in the rat’s bone. Calcif Tissue Int. 1990;46(3):200–4.

    Article  CAS  PubMed  Google Scholar 

  176. Blau M, Ganatra R, Bender MA. 18F-fluoride for bone imaging. Paper presented at seminars in nuclear medicine, 1972.

    Article  CAS  PubMed  Google Scholar 

  177. Toegel S, Hoffmann O, Wadsak W, et al. Uptake of bone-seekers is solely associated with mineralisation! A study with 99m Tc-MDP, 153 Sm-EDTMP and 18 F-fluoride on osteoblasts. Eur J Nucl Med Mol Imaging. 2006;33(4):491–4.

    Article  PubMed  Google Scholar 

  178. Even-Sapir E, Metser U, Flusser G, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45(2):272–8.

    PubMed  Google Scholar 

  179. Schiepers C, Nuyts J, Bormans G, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med. 1997;38(12):1970–6.

    CAS  PubMed  Google Scholar 

  180. Frost ML, Cook GJ, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of Risedronate on regional bone metabolism and blood flow at the lumbar spine measured by18F-fluoride positron emission tomography. J Bone Miner Res. 2003;18(12):2215–22.

    Article  CAS  PubMed  Google Scholar 

  181. Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20.

    Article  PubMed  Google Scholar 

  182. Even-Sapir E. 18F-fluoride PET/computed tomography imaging. PET Clin. 2014;9(3):277–85.

    Article  PubMed  Google Scholar 

  183. Beheshti M, Mottaghy F, Payche F, et al. 18 F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42(11):1767–77.

    Article  CAS  PubMed  Google Scholar 

  184. Laverick S, Bounds G, Wong WL. [18F]-fluoride positron emission tomography for imaging condylar hyperplasia. Br J Oral Maxillofac Surg. 2009;47(3):196–9.

    Article  CAS  PubMed  Google Scholar 

  185. Raje N, Woo S-B, Hande K, et al. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008;14(8):2387–95.

    Article  CAS  PubMed  Google Scholar 

  186. Wilde F, Steinhoff K, Frerich B, et al. Positron-emission tomography imaging in the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;107(3):412–9.

    Article  Google Scholar 

  187. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop. 2007;27(3):277–82.

    Article  PubMed  Google Scholar 

  188. Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop. 2007;27(1):90–3.

    Article  PubMed  Google Scholar 

  189. Strobel K, Fischer DR, Tamborrini G, et al. 18 F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37(9):1760–5.

    Article  PubMed  Google Scholar 

  190. Drubach LA, Johnston PR, Newton AW, Perez-Rossello JM, Grant FD, Kleinman PK. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255(1):173–81.

    Article  PubMed  Google Scholar 

  191. Gamie S, El-Maghraby T. The role of PET/CT in evaluation of facet and disc abnormalities in patients with low back pain using 18 F-fluoride. Nucl Med Rev. 2008;11(1):17–21.

    Google Scholar 

  192. Schiepers C, Broos P, Miserez M, Bormans G, De Roo M. Measurement of skeletal flow with positron emission tomography and 18 F-fluoride in femoral head osteonecrosis. Arch Orthop Trauma Surg. 1998;118(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  193. Ullmark G, Sörensen J, Nilsson O. Bone healing of severe acetabular defects after revision arthroplasty: a clinical positron emission tomography study of 7 cases. Acta Orthop. 2009;80(2):179–83.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Fischer DR, Maquieira GJ, Espinosa N, et al. Therapeutic impact of [18 F] fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skelet Radiol. 2010;39(10):987–97.

    Article  Google Scholar 

  195. Frost ML, Fogelman I, Blake GM, Marsden PK, Cook GJ. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J Bone Miner Res. 2004;19(11):1797–804.

    Article  CAS  PubMed  Google Scholar 

  196. Cook GJ, Lodge MA, Blake GM, Marsden PK, Fogelman I. Differences in skeletal kinetics between vertebral and humeral bone measured by 18F-fluoride positron emission tomography in postmenopausal women. J Bone Miner Res. 2000;15(4):763–9.

    Article  CAS  PubMed  Google Scholar 

  197. Derlin T, Richter U, Bannas P, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862.

    Article  PubMed  Google Scholar 

  198. Beheshti M, Mottaghy FM, Paycha F, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42(11):1767–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Beheshti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beheshti, M., Manafi-Farid, R., Rezaee, A., Langsteger, W. (2020). PET/CT and PET/MRI, Normal Variations, and Artifacts. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics