Skip to main content

Deep Brain Stimulation for Gait and Postural Disturbances in Parkinson’s Disease

  • Chapter
  • First Online:
Advances in Motor Neuroprostheses

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by distal (i.e., tremor, bradykinesia, and rigidity) and axial motor symptoms (i.e., gait and postural disturbances). Deep brain stimulation (DBS) is a neurosurgical approach that uses electrical current delivered by an implantable pulse generator to modulate neural activity. Although DBS at the subthalamic nucleus (STN) and the internal globus pallidus (GPi) are well established for the treatment of the distal symptoms in PD, long-term studies of axial symptoms show a decline in efficacy with progression of the disease. Currently, there is no pharmacological or neurosurgical treatment available for the axial symptoms of advanced PD. Thus, the design of novel stimulation strategies to treat gait disturbances and postural instability has been investigated, including targets such as the pedunculopontine nucleus (PPN) and the substantia nigra pars reticulata (SNr). Here, we reviewed the current state of understanding regarding the effects of STN/GPi DBS, PPN DBS, and SNr DBS on gait and postural disturbances in PD and the proposed underlying mechanisms of action. The stimulation parameters (i.e., location, frequency, amplitude, and pulse width) and localization criteria for accurate placement of DBS electrodes within each target are discussed. As DBS at spatially distinct subregions of a target impacts the effectiveness of the therapy, electrode misplacement may directly contribute to the mixed results of DBS on the gait and postural disturbances of PD. We highlight the need for future studies to provide details on the specific subregion of the stimulation target to further advance the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Marras, J.C. Beck, J.H. Bower, E. Roberts, B. Ritz, G.W. Ross, et al., Prevalence of Parkinson’s disease across North America. NpjParkinson’s Dis. 4, 1–7 (2018). https://doi.org/10.1038/s41531-018-0058-0

    Article  Google Scholar 

  2. S.L. Kowal, T.M. Dall, R. Chakrabarti, M.V. Storm, A. Jain, The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord. 28(3), 10–15 (2013). https://doi.org/10.1002/mds.25292

    Article  Google Scholar 

  3. J.M. Fearnley, A.J. Lees, Ageing and Parkinson’ disease: substantia nigra regional selectivity. Brain, 114, 2283–2301 (1991)

    Google Scholar 

  4. M. Politis, K. Wu, S. Molloy, P.G. Bain, K.R. Chaudhuri, P. Piccini, Parkinson’s disease symptoms: the patient’s perspective. Mov. Disord. 25(11), 1646–1651 (2010). https://doi.org/10.1002/mds.23135

    Article  PubMed  Google Scholar 

  5. N. Giladi, T.A. Treves, E.S. Simon, H. Shabtai, Y. Orlov, B. Kandinov, et al., Freezing of gait in patients with advanced Parkinson’s disease. J. Neural Transm. (Vienna) 108, 53–61 (2001)

    Article  CAS  Google Scholar 

  6. J.G. Nutt, B.R. Bloem, N. Giladi, M. Hallett, F.B. Horak, A. Nieuwboer, Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 10(8), 734–744 (2011). https://doi.org/10.1016/S1474-4422(11)70143-0

    Article  PubMed  Google Scholar 

  7. B.R. Bloem, J.M. Hausdorff, J.E. Visser, N. Giladi, Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19(8), 871–884 (2004). https://doi.org/10.1002/mds.20115

    Article  PubMed  Google Scholar 

  8. J.J. Crouse, J.R. Phillips, M. Jahanshahi, A.A. Moustafa, Postural instability and falls in Parkinson’s disease. Rev. Neurosci. 27(5), 549–555 (2016). https://doi.org/10.1515/revneuro-2016-0002

    Article  PubMed  Google Scholar 

  9. G.K. Wenning, G. Ebersbach, M. Verny, K.R. Chaudhuri, K. Jellinger, A. McKee, et al., Progression of falls in postmortem-confirmed parkinsonian disorders. Mov. Disord. 14(6), 947–950 (1999). https://doi.org/10.1002/1531-8257(199911)14:6<947::AID-MDS1006>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  10. T. Masud, R.O. Morris, Epidemiology of falls. Age Ageing 30, 3–7 (2001). https://doi.org/10.1093/ageing/30.suppl_3.3

    Article  PubMed  Google Scholar 

  11. M.W. Creaby, M.H. Cole, Gait characteristics and falls in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat. Disord. 57, 1–8 (2018). https://doi.org/10.1016/j.parkreldis.2018.07.008

    Article  PubMed  Google Scholar 

  12. C.G. Goetz, B.C. Tilley, S.R. Shaftman, G.T. Stebbins, S. Fahn, P. Martinez-martin, et al., Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23(15), 2129–2170 (2008). https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  13. G. Porras, P. De Deurwaerdere, Q. Li, M. Marti, R. Morgenstern, R. Sohr, et al., L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci. Rep. 4, 3730 (2014). https://doi.org/10.1038/srep03730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Hickey, M. Stacy, Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Front. Neurosci. 10, 173 (2016). https://doi.org/10.3389/fnins.2016.00173

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Ramirez-Zamora, J.L. Ostrem, Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease a review. JAMA Neurol. 75(3), 367–372 (2018). https://doi.org/10.1001/jamaneurol.2017.4321

    Article  PubMed  Google Scholar 

  16. P.P. Perrin, Bilateral subthalamic nucleus stimulation improves balance control in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 76, 780–788 (2005). https://doi.org/10.1136/jnnp.2004.047829

    Article  PubMed  PubMed Central  Google Scholar 

  17. M. Pötter-Nerger, J. Volkmann, Deep brain stimulation for gait and postural symptoms in Parkinson’s disease. Mov. Disord. 28(11), 1609–1615 (2013). https://doi.org/10.1002/mds.25677

    Article  PubMed  Google Scholar 

  18. S. Vercruysse, W. Vandenberghe, L. Münks, B. Nuttin, H. Devos, A. Nieuwboer, Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: a prospective controlled study. J. Neurol. Neurosurg. Psychiatry 85, 872–878 (2014). https://doi.org/10.1136/jnnp-2013-306336

    Article  Google Scholar 

  19. P. Krack, P. Pollak, P. Limousin, D. Hoffmann, J. Xie, A. Benazzouz, A.L. Benabid, Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121(Pt 3), 451–457 (1998). https://doi.org/10.1093/brain/121.3.451

    Article  PubMed  Google Scholar 

  20. M.C. Rodriguez-Oroz, J.A. Obeso, A.E. Lang, J.L. Houeto, P. Pollak, S. Rehncrona, et al., Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(Pt 10), 2240–2249 (2005). https://doi.org/10.1093/brain/awh571

    Article  CAS  PubMed  Google Scholar 

  21. S. Chabardes, V. Fraix, C. Ardouin, A. Koudsie, P.D. Limousin, D. Ph, Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced parkinson’s disease. N. Engl. J. Med. 349(20), 1925–1934 (2003)

    Article  Google Scholar 

  22. A. Fasano, J. Herzog, E. Seifert, H. Stolze, D. Falk, J. Volkmann, Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov. Disord. 26(5), 844–851 (2011). https://doi.org/10.1002/mds.23583

    Article  PubMed  Google Scholar 

  23. M.E. McNeely, T. Hershey, M.C. Campbell, S.D. Tabbal, M. Karimi, J.M. Hartlein, et al., Effects of deep brain stimulation of dorsal versus ventral subthalamic nucleus regions on gait and balance in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 82(11), 1250–1255 (2011). https://doi.org/10.1136/jnnp.2010.232900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. W.M.M. Schüpbach, N. Chastan, M.L. Welter, J.L. Houeto, V. Mesnage, A.M. Bonnet, et al., Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J. Neurol. Neurosurg. Psychiatry 76(12), 1640–1644 (2005). https://doi.org/10.1136/jnnp.2005.063206

    Article  PubMed  PubMed Central  Google Scholar 

  25. B.F.L. van Nuenen, R.A.J. Esselink, M. Munneke, J.D. Speelman, T. van Laar, B.R. Bloem, Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson’s disease. Mov. Disord. 23(16), 2404–2406 (2008). https://doi.org/10.1002/mds.21986

    Article  PubMed  Google Scholar 

  26. D.T.M. Chan, X.L. Zhu, J.H.M. Yeung, V.C.T. Mok, E. Wong, C. Lau, et al., Complications of deep brain stimulation: a collective review. Asian J. Surg. 32(4), 258–263 (2009). https://doi.org/10.1016/S1015-9584(09)60404-8

    Article  PubMed  Google Scholar 

  27. E.B. Montgomery, Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov. Disord. 27(11), 1387–1391 (2012). https://doi.org/10.1002/mds.25000

    Article  PubMed  Google Scholar 

  28. A. Benazzouz, S. Breit, A. Koudsie, P. Pollak, Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov. Disord. 17, 145–149 (2002). https://doi.org/10.1002/mds.10156

    Article  Google Scholar 

  29. A.M. Bonnet, Y. Loria, M.H. Saint-Hilaire, F. Lhermitte, Y. Agid, Does long-term aggravation of Parkinson’s disease result from nondopaminergic lesions? Neurology 37(9), 1539–1542 (1987). https://doi.org/10.1212/WNL.37.9.1539

    Article  CAS  PubMed  Google Scholar 

  30. J. Volkmann, A. Albanese, J. Kulisevsky, A. Tornqvist, J. Houeto, B. Pidoux, et al., Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson’s disease. Mov. Disord. 24(8), 1154–1161 (2009). https://doi.org/10.1002/mds.22496

    Article  PubMed  Google Scholar 

  31. F.M. Weaver, K.A. Follett, M. Stern, C.L. Harris, J. Rothlind, E.C. Lai, … R. Simpson, Randomized trial of deep brain stimulation for Parkinson disease (2012)

    Google Scholar 

  32. A. Kishore, R. Rao, S. Krishnan, D. Panikar, G. Sarma, M.P. Sivasanakaran, S. Sarma, Long-term stability of effects of subthalamic stimulation in Parkinson’s disease: Indian experience. Mov. Disord. 25(14), 2438–2444 (2010). https://doi.org/10.1002/mds.23269

    Article  PubMed  Google Scholar 

  33. A. Merola, M. Zibetti, S. Angrisano, L. Rizzi, V. Ricchi, C.A. Artusi, et al., Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain J. Neurol. 134(Pt 7), 2074–2084 (2011). https://doi.org/10.1093/brain/awr121

    Article  Google Scholar 

  34. E. Moro, A.M. Lozano, P. Pollak, Y. Agid, S. Rehncrona, J. Volkmann, et al., Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov. Disord. 25(5), 578–586 (2010b). https://doi.org/10.1002/mds.22735

    Article  PubMed  Google Scholar 

  35. A. Castrioto, A.M. Lozano, Y.Y. Poon, A.E. Lang, M. Fallis, E. Moro, Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch. Neurol. 68(12), 1550–1556 (2011). https://doi.org/10.1001/archneurol.2011.182

    Article  PubMed  Google Scholar 

  36. M. Zibetti, A. Merola, L. Rizzi, V. Ricchi, S. Angrisano, Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov. Disord. 26(13), 2327–2334 (2011). https://doi.org/10.1002/mds.23903

    Article  PubMed  Google Scholar 

  37. E.E. Benarroch, Implications of subthalamic nucleus and its connections stimulation, 1991–1996 (2008)

    Google Scholar 

  38. C. Hamani, E. Moro, A.M. Lozano, The pedunculopontine nucleus as a target for deep brain stimulation. J. Neural Transm. 118, 1461–1468 (2011). https://doi.org/10.1007/s00702-010-0547-8

    Article  PubMed  Google Scholar 

  39. J.M. Shine, E. Matar, P.B. Ward, S.J. Bolitho, M. Gilat, M. Pearson, et al., Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain 136, 1204–1215 (2018). https://doi.org/10.1093/brain/awt049

    Article  Google Scholar 

  40. P.A. Pahapill, A.M. Lozano, The pedunculopontine nucleus and Parkinson’s disease, 1767–1783 (2000)

    Google Scholar 

  41. A. Abosch, S. Kapur, A.E. Lang, D. Hussey, E. Sime, J. Miyasaki, et al., Stimulation of the subthalamic nucleus in Parkinson’s disease does not produce striatal dopamine release. Neurosurgery 53(5), 1095–1102 (2003). https://doi.org/10.1227/01.NEU.0000088662.69419.1B

    Article  PubMed  Google Scholar 

  42. C.H. Tai, M.K. Pan, J.J. Lin, C.S. Huang, Y.C. Yang, C.C. Kuo, Subthalamic discharges as a causal determinant of parkinsonian motor deficits. Ann. Neurol. 72(3), 464–476 (2012). https://doi.org/10.1002/ana.23618

    Article  PubMed  Google Scholar 

  43. A. Eusebio, W. Thevathasan, L. Doyle Gaynor, A. Pogosyan, E. Bye, T. Foltynie, et al., Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J. Neurol. Neurosurg. Psychiatry 82(5), 569–573 (2011). https://doi.org/10.1136/jnnp.2010.217489

    Article  CAS  PubMed  Google Scholar 

  44. J. Kahan, L. Mancini, M. Urner, K. Friston, M. Hariz, E. Holl, et al., Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson’s disease. PLoS One 7(12), e50270 (2012). https://doi.org/10.1371/journal.pone.0050270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Parent, L.N. Hazrati, Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res. Rev. 20(1), 128–154 (1995). https://doi.org/10.1016/0165-0173(94)00008-D

    Article  CAS  PubMed  Google Scholar 

  46. B.R. Aravamuthan, K.A. Muthusamy, J.F. Stein, T.Z. Aziz, H. Johansen-Berg, Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. NeuroImage 37(3), 694–705 (2007). https://doi.org/10.1016/j.neuroimage.2007.05.050

    Article  CAS  PubMed  Google Scholar 

  47. H.M. Khoo, H. Kishima, K. Hosomi, T. Maruo, N. Tani, S. Oshino, et al., Low-frequency subthalamic nucleus stimulation in Parkinson’s disease: a randomized clinical trial. Mov. Disord. 29(2), 270–274 (2014). https://doi.org/10.1002/mds.25810

    Article  PubMed  Google Scholar 

  48. E.L. Johnsen, N. Sunde, P.H. Mogensen, K. Østergaard, MRI verified STN stimulation site – gait improvement and clinical outcome. Eur. J. Neurol. 18, 746–753 (2010). https://doi.org/10.1111/j.1468-1331.2010.02962.x

    Article  Google Scholar 

  49. L. Mallet, M. Schupbach, K. N’Diaye, P. Remy, E. Bardinet, V. Czernecki, et al., Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc. Natl. Acad. Sci. 104(25), 10661–10666 (2007). https://doi.org/10.1073/pnas.0610849104

    Article  CAS  PubMed  Google Scholar 

  50. B. Bejjani, P. Damier, I. Arnulf, A.M. Bonnet, M. Vidailhet, D. Dormont, et al., Pallidal stimulation for Parkinson’s disease: two targets? Neurology 49(6), 1564–1569 (1997). https://doi.org/10.1212/WNL.49.6.1564

    Article  CAS  PubMed  Google Scholar 

  51. P. Krystkowiak, J.D. Guieu, Chronic bilateral pallidal stimulation and levodopa do not improve gait in the same way in Parkinson’s disease: a study using a video motion analysis system. J. Neurol. 248(11), 944–949 (2001)

    Article  CAS  Google Scholar 

  52. C. Moreau, STN-DBS frequency effects on freezing of gait in advanced Parkinson disease (2008)

    Google Scholar 

  53. S. Vallabhajosula, I.U. Haq, N. Hwynn, G. Oyama, M. Okun, M.D. Tillman, C.J. Hass, Brain stimulation low-frequency versus high-frequency subthalamic nucleus deep brain stimulation on postural control and gait in Parkinson’s disease: a quantitative study. Brain Stimul. 8(1), 64–75 (2015). https://doi.org/10.1016/j.brs.2014.10.011

    Article  PubMed  Google Scholar 

  54. T. Xie, U.J. Kang, P. Warnke, Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83(10), 1015–1017 (2012). https://doi.org/10.1136/jnnp-2011-302091

    Article  PubMed  Google Scholar 

  55. V. Ricchi, M. Zibetti, S. Angrisano, A. Merola, N. Arduino, C.A. Artusi, et al., Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimul. 5(3), 388–392 (2012). https://doi.org/10.1016/j.brs.2011.07.001

    Article  PubMed  Google Scholar 

  56. M.D. Mendonça, R. Barbosa, A. Seromenho-Santos, C. Reizinho, P. Bugalho, R. Miguel, et al., Early use of 80 Hz subthalamic stimulation in Parkinson’s disease as an alternative for High-frequency stimulation induced gait changes and postural instability. Brain Stimul. 11(3), 620–622 (2018). https://doi.org/10.1016/j.brs.2017.12.005

    Article  PubMed  Google Scholar 

  57. C. Sidiropoulos, R. Walsh, C. Meaney, Y.Y. Poon, M. Fallis, E. Moro, Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. J. Neurol. 260(9), 2306–2311 (2013). https://doi.org/10.1007/s00415-013-6983-2

    Article  CAS  PubMed  Google Scholar 

  58. N.A. Hamid, R.D. Mitchell, P. Mocroft, G.W.M. Westby, J. Milner, H. Pall, Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J. Neurol. Neurosurg. Psychiatry 76(3), 409–414 (2005). https://doi.org/10.1136/jnnp.2003.032029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. J. Guridi, M.C. Rodriguez-Oroz, A.M. Lozano, E. Moro, A. Albanese, B. Nuttin, et al., Targeting the basal ganglia for deep brain stimulation in Parkinson’s disease. Neurology 55(12 Suppl 6), S21–S28 (2000)

    CAS  PubMed  Google Scholar 

  60. E. Cuny, D. Guehl, P. Burbaud, C. Gross, V. Dousset, A. Rougier, Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J. Neurosurg. 97(3), 591–597 (2002). https://doi.org/10.3171/jns.2002.97.3.0591

    Article  PubMed  Google Scholar 

  61. W.D. Hutchison, R.J. Allan, H. Opitz, R. Levy, J.O. Dostrovsky, A.E. Lang, A.M. Lozano, Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann. Neurol. 44(4), 622–628 (1998). https://doi.org/10.1002/ana.410440407

    Article  CAS  PubMed  Google Scholar 

  62. A. Moran, I. Bar-Gad, H. Bergman, Z. Israel, Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Mov. Disord. 21(9), 1425–1431 (2006). https://doi.org/10.1002/mds.20995

    Article  PubMed  Google Scholar 

  63. H.J. Lee, W.W. Lee, S.K. Kim, H. Park, H.S. Jeon, H.B. Kim, et al., Tremor frequency characteristics in Parkinson’s disease under resting-state and stress-state conditions. J. Neurol. Sci. 362, 272–277 (2016). https://doi.org/10.1016/j.jns.2016.01.058

    Article  PubMed  Google Scholar 

  64. A. Zaidel, A. Spivak, B. Grieb, H. Bergman, Z. Israel, Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 133(Pt 7), 2007–2021 (2010). https://doi.org/10.1093/brain/awq144

    Article  PubMed  Google Scholar 

  65. M. Bin-Mahfoodh, C. Hamani, E. Sime, A.M. Lozano, Longevity of batteries in internal pulse generators used for deep brain stimulation. Stereotact. Funct. Neurosurg. 80(1–4), 56–60 (2003). https://doi.org/10.1159/000075161

    Article  PubMed  Google Scholar 

  66. T. Xie, M. Padmanaban, L. Bloom, E. MacCracken, B. Bertacchi, A. Dachman, P. Warnke, Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms in Parkinson patients with bilateral STN DBS: a mini-review. Transl. Neurodegener. 6, 13 (2017). https://doi.org/10.1186/s40035-017-0083-7

    Article  PubMed  PubMed Central  Google Scholar 

  67. E. Garcia-Rill, The pedunculopontine nucleus. Prog. Neurobiol. 36(5), 363–389 (1991)

    Article  CAS  Google Scholar 

  68. K.A. Muthusamy, B.R. Aravamuthan, M.L. Kringelbach, N. Jenkinson, N.L. Voets, H. Johansen-Berg, et al., Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J. Neurosurg. 107(4), 814–820 (2007). https://doi.org/10.3171/JNS-07/10/0814

    Article  PubMed  Google Scholar 

  69. P.M. Schweder, C. Joint, P.C. Hansen, A.L. Green, G. Quaghebeur, T.Z. Aziz, Chronic pedunculopontine nucleus stimulation restores functional connectivity. Neuroreport 21, 1065–1068 (2010). https://doi.org/10.1097/WNR.0b013e32833ce607

    Article  PubMed  Google Scholar 

  70. N.I. Bohnen, M.L.T.M. Müller, R.A. Koeppe, S.A. Studenski, M.A. Kilbourn, K.A. Frey, R.L. Albin, History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73(20), 1670–1676 (2009). https://doi.org/10.1212/WNL.0b013e3181c1ded6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. N.I. Bohnen, K.A. Frey, S. Studenski, V. Kotagal, R.A. Koeppe, P.J.H. Scott, et al., Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 81(18), 1611–1616 (2013). https://doi.org/10.1212/WNL.0b013e3182a9f558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. E.C. Hirsch, A.M. Graybiel, C. Duyckaerts, F. Javoy-Agid, Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl. Acad. Sci. USA 84(16), 5976–5980 (1987)

    Article  CAS  Google Scholar 

  73. C. Karachi, D. Grabli, F.A. Bernard, D. Tandé, N. Wattiez, H. Belaid, et al., Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Investig. 120(8), 2745–2754 (2010). https://doi.org/10.1172/JCI42642

    Article  CAS  PubMed  Google Scholar 

  74. D. Grabli, C. Karachi, E. Folgoas, M. Monfort, D. Tande, S. Clark, et al., Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J. Neurosci. 33(29), 11986–11993 (2013). https://doi.org/10.1523/JNEUROSCI.1568-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. W. Thevathasan, E. Moro, What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson’s disease? Neurobiol. Dis. 128, 67–74 (2018). https://doi.org/10.1016/j.nbd.2018.06.014

    Article  PubMed  Google Scholar 

  76. A. Stefani, A.M. Lozano, A. Peppe, P. Stanzione, S. Galati, D. Tropepi, et al., Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130, 1596–1607 (2007). https://doi.org/10.1093/brain/awl346

    Article  PubMed  Google Scholar 

  77. E. Moro, C. Hamani, Y. Poon, T. Al-khairallah, O. Dostrovsky, W.D. Hutchison, A.M. Lozano, Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133(Pt 1), 215–224 (2010a). https://doi.org/10.1093/brain/awp261

    Article  PubMed  Google Scholar 

  78. V. Fraix, L. Goetz, C. Ardouin, J. Yelnik, M.U. Ferraye, B. Debu, et al., Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133(Pt 1), 205–214 (2010). https://doi.org/10.1093/brain/awp229

    Article  PubMed  Google Scholar 

  79. S. Khan, S.S. Gill, L. Mooney, S. Khan, Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 78(14), 1090–1095 (2012). https://doi.org/10.1212/WNL.0b013e31824e8e96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. M. Welter, A. Demain, C. Ewenczyk, PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J. Neurol. 262, 1515–1525 (2015). https://doi.org/10.1007/s00415-015-7744-1

    Article  PubMed  Google Scholar 

  81. Z.W. Zhang, Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Elsevier (2015) https://doi.org/10.1016/j.neulet.2015.06.006

  82. N. Chastan, G.W.M. Westby, J. Yelnik, E. Bardinet, M.C. Do, Y. Agid, M.L. Welter, Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 132(1), 172–184 (2009). https://doi.org/10.1093/brain/awn294

    Article  CAS  PubMed  Google Scholar 

  83. D. Weiss, M. Walach, C. Meisner, M. Fritz, M. Scholten, S. Breit, et al., Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 136, 2098–2108 (2013). https://doi.org/10.1093/brain/awt122

    Article  PubMed  PubMed Central  Google Scholar 

  84. K. Takakusaki, T. Habaguchi, J. Ohtinata-Sugimoto, K. Saitoh, T. Sakamoto, Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119, 293–308 (2003). https://doi.org/10.1016/S0306-4522(03)00095-2

    Article  CAS  PubMed  Google Scholar 

  85. G.C. McConnell, W.M. Grill, Stimulation location within the substantia nigra pars reticulata differentially modulates gait in hemiparkinsonian rats. In Proceedings of the 6 th International IEEE EMBS Conference on Neural Engineering, San Diego, CA, (2013)

    Google Scholar 

  86. S.A. Shimamoto, P.S. Larson, J.L. Ostrem, G.A. Glass, R.S. Turner, P.A. Starr, Physiological identification of the human pedunculopontine nucleus. J. Neurol. Neurosurg. Psychiatry 81, 80–86 (2010). https://doi.org/10.1136/jnnp.2009.179069

    Article  CAS  PubMed  Google Scholar 

  87. M. Weinberger, C. Hamani, W.D. Hutchison, E. Moro, A.M. Lozano, J.O. Dostrovsky, Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp. Brain Res. 188(2), 165–174 (2008). https://doi.org/10.1007/s00221-008-1349-1

    Article  PubMed  Google Scholar 

  88. H. Strumpf, T. Noesselt, M.A. Schoenfeld, J. Voges, P. Panther, J. Kaufmann, et al., Deep brain stimulation of the pedunculopontine tegmental nucleus (PPN) influences visual contrast sensitivity in human observers. PLoS One 11(5), e0155206 (2016). https://doi.org/10.1371/journal.pone.0155206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. K. Takakusaki, K. Saitoh, H. Harada, M. Kashiwayanagi, Role of basal ganglia – brainstem pathways in the control of motor behaviors. Neurosci. Res. 50, 137–151 (2004). https://doi.org/10.1016/j.neures.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  90. T. Moriizumi, Y. Nakamura, H. Tokuno, Y. Kitao, M. Kudo, Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Exp. Brain Res. 71(2), 298–306 (1988). https://doi.org/10.1007/BF00247490

    Article  CAS  PubMed  Google Scholar 

  91. Y.H. Fu, Y. Yuan, G. Halliday, Z. Rusznák, C. Watson, G. Paxinos, A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct. Funct. 217(2), 591–612 (2012). https://doi.org/10.1007/s00429-011-0349-2

    Article  PubMed  Google Scholar 

  92. A.C. Sutton, W. Yu, M.E. Calos, A.B. Smith, A. Ramirez-zamora, E.S. Molho, et al., Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J. Neurophysiol. 109, 363–374 (2013). https://doi.org/10.1152/jn.00311.2012

    Article  PubMed  Google Scholar 

  93. T. Wichmann, M.A. Kliem, M.R. Delong, Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp. Neurol. 424, 410–424 (2001). https://doi.org/10.1006/exnr.2000.7572

    Article  Google Scholar 

  94. D. Weiss, Effects of subthalamic and nigral stimulation on gait kinematics in Parkinson’s disease. Front. Neurol. 8(October), 1–8 (2017). https://doi.org/10.3389/fneur.2017.00543

    Article  Google Scholar 

  95. J.M. Henderson, D. Stanic, D. Tomas, J. Patch, M.K. Horne, D. Bourke, D.I. Finkelstein, Postural changes after lesions of the substantia nigra pars reticulata in hemiparkinsonian monkeys. Behav. Brain Res. 160, 267–276 (2005). https://doi.org/10.1016/j.bbr.2004.12.008

    Article  PubMed  Google Scholar 

  96. G. Du, M.M. Lewis, C. Sica, L. He, J.R. Connor, L. Kong, et al., Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson’s patients. Mov. Disord. 33(9), 1423–1431 (2018). https://doi.org/10.1002/mds.27318

    Article  PubMed  PubMed Central  Google Scholar 

  97. C.R. Camalier, P.E. Konrad, C.E. Gill, C. Kao, M.R. Remple, H.M. Nasr, et al., Methods for surgical targeting of the. STN in early-stage Parkinson’s disease 5(March), 1–6 (2014). https://doi.org/10.3389/fneur.2014.00025

    Article  Google Scholar 

  98. S. Mrakic-sposta, S. Marceglia, M. Egidi, G. Carrabba, P. Rampini, M. Locatelli, et al., Extracellular spike microrecordings from the subthalamic area in Parkinson’s disease. J. Clin. Neurosci. 15, 559–567 (2008). https://doi.org/10.1016/j.jocn.2007.02.091

    Article  PubMed  Google Scholar 

  99. S. Breit, A. Martin, L. Lessmann, D. Cerkez, T. Gasser, J.B. Schulz, Bilateral changes in neuronal activity of the basal ganglia in the unilateral 6-hydroxydopamine rat model. J. Neurosci. Sci. 86(6), 1388–1396 (2008). https://doi.org/10.1002/jnr.21588

    Article  CAS  Google Scholar 

  100. Y. Wang, Q. Jun, J. Liu, U. Ali, Z. Hua, Y. Ping, et al., Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson’s disease. Brain Res. 1324, 54–63 (2010). https://doi.org/10.1016/j.brainres.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  101. H. Li, G.C. McConnell, Microstimulation evoked neuronal activity in the substantia nigra pars reticulata in anesthetized rats. Brain Stimul. 12(2), e66–e68 (2019)

    Article  Google Scholar 

  102. D.A. Nathan, S. Center, C.y. Wu, W. Keller, An implantable synchronous pacemaker for the long term correction of complete heart block. Am. J. Cardiol. 11(3), 362–367 (1963). https://doi.org/10.1016/0002-9149(63)90130-9

    Article  CAS  PubMed  Google Scholar 

  103. B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S.N. Haber, Z. Israel, et al., Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011). https://doi.org/10.1016/j.neuron.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  104. F.J. Santos, R.M. Costa, F. Tecuapetla, Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72, 197–198 (2011). https://doi.org/10.1016/j.neuron.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  105. M.N. Gasson, S.Y. Wang, T.Z. Aziz, J.F. Stein, K. Warwick, Towards a demand driven deep-brain stimulator for the treatment of movement disorders. In 3rd IEE International Seminar on Medical Applications of Signal Processing (2005), https://doi.org/10.1049/ic:20050336

  106. D. Graupe, I. Basu, D. Tuninetti, P. Vannemreddy, K.V. Slavin, Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol. Res. 32(9), 899–904 (2010). https://doi.org/10.1179/016164110X12767786356354

    Article  PubMed  Google Scholar 

  107. M. Cassidy, P. Mazzone, A. Oliviero, A. Insola, P. Tonali, V. Di Lazzaro, P. Brown, Movement-related changes in synchronization in the human basal ganglia. Brain 125(Pt 6), 1235–1246 (2002). https://doi.org/10.1093/brain/awf135

    Article  PubMed  Google Scholar 

  108. S. Little, A. Pogosyan, A.A. Kuhn, P. Brown, Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp. Neurol. 236(2), 383–388 (2012). https://doi.org/10.1016/j.expneurol.2012.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. T. Mera, J.L. Vitek, J.L. Alberts, J.P. Giuffrida, Kinematic optimization of deep brain stimulation across multiple motor symptoms in Parkinson’s disease. J. Neurosci. Methods 198(2), 280–286 (2011). https://doi.org/10.1016/j.jneumeth.2011.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  110. C.R. Butson, S.E. Cooper, J.M. Henderson, B. Wolgamuth, C.C. McIntyre, Probabilistic analysis of activation volumes generated during deep brain stimulation. NeuroImage 54(3), 2096–2104 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.059

    Article  PubMed  Google Scholar 

  111. A. Eusebio, H. Cagnan, P. Brown, Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease? Front. Integr. Neurosci. 6, 47 (2012). https://doi.org/10.3389/fnint.2012.00047

    Article  PubMed  PubMed Central  Google Scholar 

  112. L.A. Johnson, S.D. Nebeck, A. Muralidharan, M.D. Johnson, K.B. Baker, J.L. Vitek, Closed-loop deep brain stimulation effects on parkinsonian motor symptoms in a non-human primate – is beta enough? Brain Stimul. 9(6), 892–896 (2016). https://doi.org/10.1016/j.brs.2016.06.051

    Article  PubMed  PubMed Central  Google Scholar 

  113. G. Kleiner-Fisman, D.N. Fisman, E. Sime, J.A. Saint-Cyr, A.M. Lozano, A.E. Lang, Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J. Neurosurg. 99(3), 489–495 (2003). https://doi.org/10.3171/jns.2003.99.3.0489

    Article  PubMed  Google Scholar 

  114. E. Ryapolova-Webb, P. Afshar, S. Stanslaski, T. Denison, C. De Hemptinne, K. Bankiewicz, P.A. Starr, Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. J. Neural Eng. 11(1), 016009 (2014). https://doi.org/10.1088/1741-2560/11/1/016009

    Article  PubMed  Google Scholar 

  115. P. Wen, M. Li, H. Xiao, R. Ding, H. Chen, J. Chang, et al., Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Neurosci. Lett. 600, 62–68 (2015). https://doi.org/10.1016/j.neulet.2015.06.006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. McConnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., McConnell, G.C. (2020). Deep Brain Stimulation for Gait and Postural Disturbances in Parkinson’s Disease. In: Vinjamuri, R. (eds) Advances in Motor Neuroprostheses. Springer, Cham. https://doi.org/10.1007/978-3-030-38740-2_7

Download citation

Publish with us

Policies and ethics