Skip to main content
Log in

A polyhedral approach to solving multicriterion combinatorial optimization problems over sets of polyarrangements

  • Published:
Cybernetics and Systems Analysis Aims and scope

Multicriterion discrete optimization problems over feasible combinatorial sets of polyarrangements are considered. Structural properties of feasible domains and different types of efficient solutions are investigated. Based on the ideas of Euclidean combinatorial optimization and the major criterion method, a polyhedral approach to the solution of the problems is developed and substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Sergienko, Mathematical Models and Methods to Solve Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (1988).

    Google Scholar 

  2. I. V. Sergienko and M. F. Kaspshitskaya, Models and Methods of Computer Solution of Combinatorial Optimization Problems [in Russian], Naukova Dumka, Kyiv (1981).

    Google Scholar 

  3. I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems: Challenges, Solution Techniques, and Investigations [in Russian], Naukova Dumka, Kyiv (2003).

    Google Scholar 

  4. I. V. Sergienko, L. N. Kozeratskaya, and T. T. Lebedeva, Stability and Parametric Analyses of Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (1995).

    Google Scholar 

  5. I. V. Sergienko, T. T. Lebedeva, and N. V. Semenova, “Existence of solutions in vector optimization problems,” Cybern. Syst. Analysis, 36, No. 6, 823–828 (2000).

    Article  MATH  Google Scholar 

  6. T. T. Lebedeva, N. V. Semenova, and T. I. Sergienko, “Optimality and solvability conditions in linear vector optimization problems with convex feasible region,” Dop. NANU, No. 10, 80–85 (2003).

    MathSciNet  Google Scholar 

  7. T. T. Lebedeva, N. V. Semenova, and T. I. Sergienko, “Stability of vector problems of integer optimization: Relationship with the stability of sets of optimal and nonoptimal solutions,” Cybern. Syst. Analysis, 41, No. 4, 551–558 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. V. Semenova, L. N. Kolechkina, and A. N. Nagirna, “An approach to solving discrete vector optimization problems over a combinatorial set of permutations,” Cybern. Syst. Analysis, 44, No. 3, 441–451 (2008).

    Article  MATH  Google Scholar 

  9. N. V. Semenova, L. M. Kolechkina, and A. M. Nagirna, “Vector combinatorial problems in a space of combinations with linear fractional functions of criteria,” Inform. Theor. Appl., 15, 240–245 (2008).

    Google Scholar 

  10. N. V. Semenova, L. N. Kolechkina, and A. N. Nagornaya, “Solution and investigation of vector problems of combinatorial optimization on a set of polypermutations,” J. Autom. Inform. Sci., 40, Issue 12, 27–42 (2008).

    Article  Google Scholar 

  11. N. Semenova, “Vector problems on a combinatorial set of polyarrangements: Optimality conditions and an approach to the solution,” in: Information Science and Computing, Book 7, Artificial Intelligence and Decision Making, 2, 187–19 (2008).

  12. L. Kolechkina, “Multicriterion problems over a combinatorial set of polyarrangements: Structural properties of solutions,” in: Information Science and Computing, Book 7, Artificial Intelligence and Decision Making, 2, 180–186 (2008).

  13. V. V. Podinovskii and V. D. Nogin, Pareto-Optimal Solutions of Multicriterion Problems [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  14. Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometric Design [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  15. Yu. G. Stoyan, O. O. Yemets, and E. M. Yemets, Optimization over Polyarrangements: Theory and Methods [in Ukrainian], RVTs PUSKU, Poltava (2005).

    Google Scholar 

  16. O. O. Yemets and L. M. Kolechkina, Combinatorial Optimization Problems with Linear Fractional Objective Functions [in Ukrainian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  17. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, and Optimization [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  18. K. Aardal and S. Hoesel, “Polyhedral techniques in combinatorial optimization. I: Theory,” Statist. Neerlandica, 15, 3–26 (1996).

    Article  Google Scholar 

  19. K. Aardal and S. Hoesel, “Polyhedral techniques in combinatorial optimization. II: Computations,” Statist. Neerlandica, 53, 131–177 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. V. Semenova, ”Optimality conditions in combinatorial vector optimization problems,“ Teor. Optym. Rishen’, No. 7, 153–160 (2008).

    Google Scholar 

  21. N. V. Semenova, L. M. Kolechkina, and A. M. Nagirna, “Solving multicriterion optimization problems over a set of polypermutations,” Dop. NANU, No. 2, 41–48 (2009).

  22. L. N. Kolechkina, “Optimal solutions of multicriterion combinatorial problems over arrangements,” Teor. Optym. Rishen’, No. 6, 67–73 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Semenova.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 118-126, May-June 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenova, N.V., Kolechkina, L.N. A polyhedral approach to solving multicriterion combinatorial optimization problems over sets of polyarrangements. Cybern Syst Anal 45, 438–445 (2009). https://doi.org/10.1007/s10559-009-9110-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-009-9110-8

Keywords

Navigation