Skip to main content

Exploiting Solar Visible-Range Observations by Inversion Techniques: From Flows in the Solar Subsurface to a Flaring Atmosphere

  • Chapter
  • First Online:
Reviews in Frontiers of Modern Astrophysics
  • 695 Accesses

Abstract

Observations of the Sun in the visible spectral range belong to standard measurements obtained by instruments both on the ground and in the space. Nowadays, both nearly continuous full-disc observations with medium resolution and dedicated campaigns of high spatial, spectral and/or temporal resolution constitute a holy grail for studies that can capture (both) the long- and short-term changes in the dynamics and energetics of the solar atmosphere. Observations of photospheric spectral lines allow us to estimate not only the intensity at small regions, but also various derived data products, such as the Doppler velocity and/or the components of the magnetic field vector. We show that these measurements contain not only direct information about the dynamics of solar plasmas at the surface of the Sun but also imprints of regions below and above it. Here, we discuss two examples: First, the local time-distance helioseismology as a tool for plasma dynamic diagnostics in the near subsurface and second, the determination of the solar atmosphere structure during flares. The methodology in both cases involves the technique of inverse modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www2.hao.ucar.edu/csac/csac-data/sp-data-description.

References

  1. O. Engvold, J.C. Vial, A. Skumanich, The Sun as a Guide to Stellar Physics (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/C2017-0-01365-4

    Google Scholar 

  2. P. Charbonneau, Living Rev. Sol. Phys. 7(1), 3 (2010). https://doi.org/10.12942/lrsp-2010-3

    ADS  Google Scholar 

  3. I.G. Usoskin, Living Rev. Sol. Phys. 14(1), 3 (2017). https://doi.org/10.1007/s41116-017-0006-9

    Article  ADS  Google Scholar 

  4. Y. Fan, Living Rev. Sol. Phys. 6(1), 4 (2009). https://doi.org/10.12942/lrsp-2009-4

    ADS  Google Scholar 

  5. C.J. Schrijver, Space Weather 13(9), 524 (2015). https://doi.org/10.1002/2015SW001252

    Article  ADS  Google Scholar 

  6. A.I. Shapiro, H. Peter, S.K. Solanki, Chapter 3 – The Sun’s Atmosphere (Elsevier, Amsterdam, 2019), pp. 59–85. https://doi.org/10.1016/B978-0-12-814334-6.00003-0

    Google Scholar 

  7. J.E. Vernazza, E.H. Avrett, R. Loeser, Astrophys. J. 30, 1 (1976). https://doi.org/10.1086/190356

    Article  ADS  Google Scholar 

  8. G. Cauzzi, A. Asensio Ramos, K. Reardon, K. Janssen, The Dynamic Sun: Challenges for Theory and Observations, vol. 600 (ESA Special Publication, Paris, 2005), p. 12.1

    Google Scholar 

  9. Å. Nordlund, R.F. Stein, M. Asplund, Living Rev. Sol. Phys. 6(1), 2 (2009). https://doi.org/10.12942/lrsp-2009-2

    ADS  Google Scholar 

  10. H. Hotta, H. Iijima, K. Kusano, Sci. Adv. 5(1), 2307 (2019)

    Article  ADS  Google Scholar 

  11. J. Sánchez Almeida, J.A. Bonet, B. Viticchié, D. Del Moro, Astrophys. J. 715(1), L26 (2010). https://doi.org/10.1088/2041-8205/715/1/L26

    Article  ADS  Google Scholar 

  12. R.F. Stein, Living Rev. Sol. Phys. 9(1), 4 (2012). https://doi.org/10.12942/lrsp-2012-4

    ADS  Google Scholar 

  13. T.M.D. Pereira, M. Asplund, R. Collet, I. Thaler, R. Trampedach, J. Leenaarts, Astron. Astrophys. 554, A118 (2013). https://doi.org/10.1051/0004-6361/201321227

    Article  ADS  Google Scholar 

  14. M. Rempel, M. Schüssler, R.H. Cameron, M. Knölker, Science 325(5937), 171 (2009). https://doi.org/10.1126/science.1173798

    Article  ADS  Google Scholar 

  15. M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Astron. Astrophys. 720(1), 233 (2010). https://doi.org/10.1088/0004-637X/720/1/233

    ADS  Google Scholar 

  16. M. Stix, The Sun: An Introduction (Springer, Berlin, 2004)

    MATH  Google Scholar 

  17. J. Christensen-Dalsgaard, W. Dappen, S.V. Ajukov, E.R. Anderson, H.M. Antia, S. Basu, V.A. Baturin, G. Berthomieu, B. Chaboyer, S.M. Chitre, A.N. Cox, P. Demarque, J. Donatowicz, W.A. Dziembowski, M. Gabriel, D.O. Gough, D.B. Guenther, J.A. Guzik, J.W. Harvey, F. Hill, G. Houdek, C.A. Iglesias, A.G. Kosovichev, J.W. Leibacher, P. Morel, C.R. Proffitt, J. Provost, J. Reiter, E.J. Rhodes, Jr., F.J. Rogers, I.W. Roxburgh, M.J. Thompson, R.K. Ulrich, Science 272, 1286 (1996). https://doi.org/10.1126/science.272.5266.1286

  18. S. Basu, H.M. Antia, Mon. Not. R. Astron. Soc. 287, 189 (1997). https://doi.org/10.1093/mnras/287.1.189

    Article  ADS  Google Scholar 

  19. J.N. Bahcall, A.M. Serenelli, M. Pinsonneault, Astrophys. J. 614, 464 (2004). https://doi.org/10.1086/423027

    Article  ADS  Google Scholar 

  20. A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Astron. Astrophys. 429, 335 (2005). https://doi.org/10.1051/0004-6361:20041507

    Article  ADS  Google Scholar 

  21. D. Benson, R. Stein, Å. Nordlund, in Solar MHD Theory and Observations: A High Spatial Resolution Perspective, ed. by J. Leibacher, R.F. Stein, H. Uitenbroek. Astronomical Society of the Pacific Conference Series, vol. 354 (2006), p. 92

    Google Scholar 

  22. M. Rempel, M. Schüssler, M. Knölker, Astrophys. J. 691, 640 (2009). https://doi.org/10.1088/0004-637X/691/1/640

    Article  ADS  Google Scholar 

  23. S.M. Hanasoge, K.R. Sreenivasan, Sol. Phys. 289, 3403 (2014). https://doi.org/10.1007/s11207-014-0471-4

    Article  ADS  Google Scholar 

  24. T.L. Duvall, Jr., S.M. Jefferies, J.W. Harvey, M.A. Pomerantz, Nature 362, 430 (1993). https://doi.org/10.1038/362430a0

    Article  ADS  Google Scholar 

  25. L. Gizon, T.L. Duvall, Jr., R.M. Larsen, J. Astrophys. Astron. 21, 339 (2000)

    Article  ADS  Google Scholar 

  26. T.L. Duvall, Jr., L. Gizon, Sol. Phys. 192, 177 (2000)

    Article  ADS  Google Scholar 

  27. J. Zhao, A.G. Kosovichev, Astrophys. J. 603, 776 (2004). https://doi.org/10.1086/381489

    Article  ADS  Google Scholar 

  28. J. Jackiewicz, L. Gizon, A.C. Birch, Sol. Phys. 251, 381 (2008). https://doi.org/10.1007/s11207-008-9158-z

    Article  ADS  Google Scholar 

  29. T.L.J. Duvall, S. D’Silva, S.M. Jefferies, J.W. Harvey, J. Schou, Nature 379, 235 (1996). https://doi.org/10.1038/379235a0

    Article  ADS  Google Scholar 

  30. J. Zhao, A.G. Kosovichev, T.L. Duvall, Jr., Astrophys. J. 557, 384 (2001). https://doi.org/10.1086/321491

    Article  ADS  Google Scholar 

  31. S. Couvidat, A.C. Birch, A.G. Kosovichev, Astrophys. J. 640, 516 (2006). https://doi.org/10.1086/500103

    Article  ADS  Google Scholar 

  32. R. Cameron, L. Gizon, T.L. Duvall, Jr., Sol. Phys. 251, 291 (2008). https://doi.org/10.1007/s11207-008-9148-1

    Article  ADS  Google Scholar 

  33. L. Gizon, H. Schunker, C.S. Baldner, S. Basu, A.C. Birch, R.S. Bogart, D.C. Braun, R. Cameron, T.L. Duvall, S.M. Hanasoge, J. Jackiewicz, M. Roth, T. Stahn, M.J. Thompson, S. Zharkov, Space Sci. Rev. 144, 249 (2009). https://doi.org/10.1007/s11214-008-9466-5

    Article  ADS  Google Scholar 

  34. H. Moradi, C. Baldner, A.C. Birch, D.C. Braun, R.H. Cameron, T.L. Duvall, L. Gizon, D. Haber, S.M. Hanasoge, B.W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H.C. Spruit, K.G. Strassmeier, M.J. Thompson, S. Zharkov, Sol. Phys. 267, 1 (2010). https://doi.org/10.1007/s11207-010-9630-4

    Article  ADS  Google Scholar 

  35. S.M. Hanasoge, T.L. Duvall, Astrophys. J. 693, 1678 (2009). https://doi.org/10.1088/0004-637X/693/2/1678

    Article  ADS  Google Scholar 

  36. L. Gizon, A.C. Birch, H.C. Spruit, Annu. Rev. Astron. Astrophys. 48(1), 289 (2010). https://doi.org/10.1146/annurev-astro-082708-101722

    Article  ADS  Google Scholar 

  37. L. Gizon, A.C. Birch, Astrophys. J. 614, 472 (2004). https://doi.org/10.1086/423367

    Article  ADS  Google Scholar 

  38. A.C. Birch, L. Gizon, Astron. Nachr. 328, 228 (2007). https://doi.org/10.1002/asna.200610724

    Article  ADS  Google Scholar 

  39. A.G. Kosovichev, Astrophys. J. Lett. 461, L55 (1996). https://doi.org/10.1086/309989

    Article  ADS  Google Scholar 

  40. G.E. Backus, J.F. Gilbert, Geogr. J. 16, 169 (1968)

    ADS  Google Scholar 

  41. G.E. Backus, J.F. Gilbert, R. Soc. Lond. Philos. Trans. Ser. A 266, 123 (1970)

    Article  ADS  Google Scholar 

  42. F.P. Pijpers, M.J. Thompson, Astron. Astrophys. 262, L33 (1992)

    ADS  Google Scholar 

  43. J. Jackiewicz, L. Gizon, A.C. Birch, M.J. Thompson, Astron. Nachr. 328, 234 (2007). https://doi.org/10.1002/asna.200610725

    Article  ADS  Google Scholar 

  44. J. Jackiewicz, A.C. Birch, L. Gizon, S.M. Hanasoge, T. Hohage, J.B. Ruffio, M. Švanda, Sol. Phys. 276(1–2), 19 (2012). https://doi.org/10.1007/s11207-011-9873-8

    Article  ADS  Google Scholar 

  45. D. Korda, M. Švanda, Astron. Astrophys. 622, A163 (2019). https://doi.org/10.1051/0004-6361/201833000

    Article  ADS  Google Scholar 

  46. M. Švanda, Astrophys. J. Lett. 759, L29 (2012). https://doi.org/10.1088/2041-8205/759/2/L29

    Article  ADS  Google Scholar 

  47. T.L. Duvall, S.M. Hanasoge, S. Chakraborty, Sol. Phys. 289, 3421 (2014). https://doi.org/10.1007/s11207-014-0537-3

    Article  ADS  Google Scholar 

  48. J. Zhao, D. Georgobiani, A.G. Kosovichev, D. Benson, R.F. Stein, Å. Nordlund, Astrophys. J. 659, 848 (2007). https://doi.org/10.1086/512009

    Article  ADS  Google Scholar 

  49. M. Švanda, L. Gizon, S.M. Hanasoge, S.D. Ustyugov, Astron. Astrophys. 530, A148 (2011). https://doi.org/10.1051/0004-6361/201016426

    Article  ADS  Google Scholar 

  50. D. Korda, M. Švanda, J. Zhao, Astron. Astrophys. 629, A55 (2019). https://doi.org/10.1051/0004-6361/201936268

    Article  ADS  Google Scholar 

  51. S. Wedemeyer-Böhm, A. Lagg, Å. Nordlund, Space Sci. Rev. 144(1–4), 317 (2009). https://doi.org/10.1007/s11214-008-9447-8

    Article  ADS  Google Scholar 

  52. T. Roudier, M. Švanda, N. Meunier, S. Keil, M. Rieutord, J.M. Malherbe, S. Rondi, G. Molodij, V. Bommier, B. Schmieder, Astron. Astrophys. 480(1), 255 (2008). https://doi.org/10.1051/0004-6361:20077973

    Article  ADS  Google Scholar 

  53. T. Roudier, B. Schmieder, B. Filippov, R. Chandra, J.M. Malherbe, Astron. Astrophys. 618, A43 (2018). https://doi.org/10.1051/0004-6361/201832937

    Article  ADS  Google Scholar 

  54. Z. Švestka, Space Sci. Rev. 5, 388 (1966). https://doi.org/10.1007/BF02653250

    Article  ADS  Google Scholar 

  55. D.F. Neidig, Sol. Phys. 121, 261 (1989). https://doi.org/10.1007/BF00161699

    Article  ADS  Google Scholar 

  56. T.R. Metcalf, R.C. Canfield, J.L.R. Saba, Astrophys. J. 365, 391 (1990). https://doi.org/10.1086/169494

    Article  ADS  Google Scholar 

  57. M.E. Machado, A.G. Emslie, E.H. Avrett, Sol. Phys. 124, 303 (1989). https://doi.org/10.1007/BF00156272

    Article  ADS  Google Scholar 

  58. P.J.D. Mauas, M.E. Machado, E.H. Avrett, Astrophys. J. 360, 715 (1990). https://doi.org/10.1086/169157

    Article  ADS  Google Scholar 

  59. P. Heinzel, L. Kleint, J. Kašparová, S. Krucker, Astrophys. J. 847, 48 (2017). https://doi.org/10.3847/1538-4357/aa86ef

    Article  ADS  Google Scholar 

  60. J.C. Martínez Oliveros, S. Krucker, H.S. Hudson, P. Saint-Hilaire, H. Bain, C. Lindsey, R. Bogart, S. Couvidat, P. Scherrer, J. Schou, Astrophys. J. Lett. 780, L28 (2014). https://doi.org/10.1088/2041-8205/780/2/L28

    Article  ADS  Google Scholar 

  61. P. Saint-Hilaire, J. Schou, J.C. Martínez Oliveros, H.S. Hudson, S. Krucker, H. Bain, S. Couvidat, Astrophys. J. Lett. 786, L19 (2014). https://doi.org/10.1088/2041-8205/786/2/L19

    Article  ADS  Google Scholar 

  62. P. Heinzel, L. Kleint, Astrophys. J. Lett. 794, L23 (2014). https://doi.org/10.1088/2041-8205/794/2/L23

    Article  ADS  Google Scholar 

  63. L. Kleint, P. Heinzel, P. Judge, S. Krucker, Astrophys. J. 816, 88 (2016). https://doi.org/10.3847/0004-637X/816/2/88

    Article  ADS  Google Scholar 

  64. A.F. Kowalski, J.C. Allred, A. Daw, G. Cauzzi, M. Carlsson, Astrophys. J. 836, 12 (2017). https://doi.org/10.3847/1538-4357/836/1/12

    Article  ADS  Google Scholar 

  65. Y. Xu, W. Cao, C. Liu, G. Yang, J. Jing, C. Denker, A.G. Emslie, H. Wang, Astrophys. J. 641, 1210 (2006). https://doi.org/10.1086/500632

    Article  ADS  Google Scholar 

  66. Y. Xu, W. Cao, J. Jing, H. Wang, Astrophys. J. Lett. 750, L7 (2012). https://doi.org/10.1088/2041-8205/750/1/L7

    Article  ADS  Google Scholar 

  67. E. Landi Degl’Innocenti, M. Landi Degl’Innocenti, Sol. Phys. 97, 239 (1985). https://doi.org/10.1007/BF00165988

    Article  ADS  Google Scholar 

  68. D.E. Rees, A. López Ariste, J. Thatcher, M. Semel, Astron. Astrophys. 355, 759 (2000)

    ADS  Google Scholar 

  69. H. Socas-Navarro, A. López Ariste, B.W. Lites, Astrophys. J. 553(2), 949 (2001). https://doi.org/10.1086/320984

    Article  ADS  Google Scholar 

  70. J.M. Borrero, S. Tomczyk, M. Kubo, H. Socas-Navarro, J. Schou, S. Couvidat, R. Bogart, Sol. Phys. 273(1), 267 (2011). https://doi.org/10.1007/s11207-010-9515-6

    Article  ADS  Google Scholar 

  71. B. Ruiz Cobo, J.C. del Toro Iniesta, Astrophys. J. 398, 375 (1992)

    Article  ADS  Google Scholar 

  72. J.C. del Toro Iniesta, Introduction to Spectropolarimetry. Introduction to Spectropolarimetry, by Jose Carlos del Toro Iniesta (Cambridge University Press, Cambridge, 2003), pp. 244, ISBN 0521818273

    Google Scholar 

  73. C. Frutiger, S.K. Solanki, M. Fligge, J.H.M.J. Bruls, Astron. Astrophys. 358, 1109 (2000)

    ADS  Google Scholar 

  74. M. van Noort, Astron. Astrophys. 548, A5 (2012). https://doi.org/10.1051/0004-6361/201220220

    Article  Google Scholar 

  75. J. Jurčák, J. Kašparová, M. Švanda, L. Kleint, Astron. Astrophys. 620, A183 (2018). https://doi.org/10.1051/0004-6361/201833946

    Article  ADS  Google Scholar 

  76. S. Tsuneta, K. Ichimoto, Y. Katsukawa, S. Nagata, M. Otsubo, T. Shimizu, Y. Suematsu, M. Nakagiri, M. Noguchi, T. Tarbell, A. Title, R. Shine, W. Rosenberg, C. Hoffmann, B. Jurcevich, G. Kushner, M. Levay, B. Lites, D. Elmore, T. Matsushita, N. Kawaguchi, H. Saito, I. Mikami, L.D. Hill, J.K. Owens, Sol. Phys. 249, 167 (2008). https://doi.org/10.1007/s11207-008-9174-z

    Article  ADS  Google Scholar 

  77. T. Kosugi, K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, S. Tachikawa, T. Hashimoto, K. Minesugi, A. Ohnishi, T. Yamada, S. Tsuneta, H. Hara, K. Ichimoto, Y. Suematsu, M. Shimojo, T. Watanabe, S. Shimada, J.M. Davis, L.D. Hill, J.K. Owens, A.M. Title, J.L. Culhane, L.K. Harra, G.A. Doschek, L. Golub, Sol. Phys. 243, 3 (2007). https://doi.org/10.1007/s11207-007-9014-6

    Article  ADS  Google Scholar 

  78. G.S. Kerr, L. Fletcher, Astrophys. J. 783, 98 (2014). https://doi.org/10.1088/0004-637X/783/2/98

    Article  ADS  Google Scholar 

  79. B.W. Lites, R. Casini, R. Manso Sainz, J. Jurčák, K. Ichimoto, R. Ishikawa, T.J. Okamoto, S. Tsuneta, L. Bellot Rubio, Astrophys. J. 713, 450 (2010). https://doi.org/10.1088/0004-637X/713/1/450

    Article  ADS  Google Scholar 

  80. C.G. Giménez de Castro, J.P. Raulin, J.F. Valle Silva, P.J.A. Simões, A.S. Kudaka, A. Valio, Space Weather 16, 1261 (2018). https://doi.org/10.1029/2018SW001969

    Article  ADS  Google Scholar 

  81. M.E. Machado, E.H. Avrett, J.E. Vernazza, R.W. Noyes, Astrophys. J. 242, 336 (1980). https://doi.org/10.1086/158467

    Article  ADS  Google Scholar 

  82. J.E. Vernazza, E.H. Avrett, R. Loeser, Astrophys. J. Suppl. Ser. 45, 635 (1981). https://doi.org/10.1086/190731

    Article  ADS  Google Scholar 

  83. J.X. Cheng, M.D. Ding, M. Carlsson, Astrophys. J. 711, 185 (2010). https://doi.org/10.1088/0004-637X/711/1/185

    Article  ADS  Google Scholar 

  84. P.J.A. Simões, G.S. Kerr, L. Fletcher, H.S. Hudson, C.G. Giménez de Castro, M. Penn, Astron. Astrophys. 605, A125 (2017). https://doi.org/10.1051/0004-6361/201730856

    Article  ADS  Google Scholar 

  85. G.S. Kerr, L. Fletcher, A.J.B. Russell, J.C. Allred, Astrophys. J. 827, 101 (2016). https://doi.org/10.3847/0004-637X/827/2/101

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Czech Science Foundation under grants 18-06319S (M.Š., J.J. and D.K.) and 19-09489S (J.K.). J.J., J.K., and M.Š. acknowledge the support from the project RVO:67985815. D.K. is supported by the Grant Agency of Charles University under grant No. 532217. We thank Juraj Lörinčík and Petr Heinzel for useful comments on an early draft of the manuscript and the referee for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Švanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Švanda, M., Jurčák, J., Korda, D., Kašparová, J. (2020). Exploiting Solar Visible-Range Observations by Inversion Techniques: From Flows in the Solar Subsurface to a Flaring Atmosphere. In: Kabáth, P., Jones, D., Skarka, M. (eds) Reviews in Frontiers of Modern Astrophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-38509-5_12

Download citation

Publish with us

Policies and ethics