Skip to main content

Development of an Integrated Process for the Production and Recovery of Some Selected Bioproducts From Lignocellulosic Materials

  • Chapter
  • First Online:
Valorization of Biomass to Value-Added Commodities

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Lignocellulosic materials have been shown to be essentially good feedstocks in the production of simple sugars, which may be used as starting materials in the production of a range of bioproducts. While high yield of sugars from lignocellulose and conversion of lignocellulosic and/or simple sugars to several bioproducts have been reported, efficient recovery of these products remains a challenge, especially if a food or medicinal-grade product is envisioned. Although many separation techniques have been proven to recover value-added products from fermentation broth, there is still a continuous search for alternative methods with additional advantage with respect to product safety and/or yield. The high pressure technique of supercritical fluids extraction and fractionation using CO2 is one such methods. However, these techniques have to meet various requirements such as high separation efficiency, biocompatibility, environmental acceptability, distribution coefficient and appropriate solvent for the isolation of targeted compound from aqueous broth. Extraction of organic compounds from aqueous solution using CO2 has been demonstrated, mainly for ethanol, studies dedicated to other organic compound mixtures in aqueous solution are scarce. It was shown in this review using experimental data that  an integrated bioprocess-supercritical carbon dioxide process can be developed for production and recovery of some selected bioproducts (bioethanol, acetoin and vanillin) produced in high, medium and low concentrations in fermentation broth, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.P.B. AB, Protein Purification Handbook, 18-1132-29 edn. (Amersham Pharmacia Biotech UK Limited, Uppsala, 1999)

    Google Scholar 

  2. A. Aden, T. Foust, Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16, 535–545 (2009)

    Article  Google Scholar 

  3. V.I. Águeda, J.A. Delgado, M.A. Uguina, J.L. Sotelo, Á. García, Column dynamics of an adsorption–drying–desorption process for butanol recovery from aqueous solutions with silicalite pellets. Sep. Purif. Technol. 104, 307–321 (2013)

    Article  Google Scholar 

  4. C.L. Albuquerque, M.A.A. Meireles, Defatting of annatto seeds using supercritical carbon dioxide as a pretreatment for the production of bixin: Experimental, modeling and economic evaluation of the process. J. Supercrit. Fluids 66, 86–95 (2012)

    Article  Google Scholar 

  5. Z. Anwar, M. Gulfraz, M. Irshad, Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 7, 163–173 (2014)

    Article  Google Scholar 

  6. K.M. Ara, M. Jowkarderis, F. Raofie, Optimization of supercritical fluid extraction of essential oils and fatty acids from flixweed (Descurainia sophia L.) seed using response surface methodology and central composite design. J. Food Sci. Technol. 52, 4450 (2015)

    Article  Google Scholar 

  7. A. Arevalo-Gallegos, Z. Ahmad, M. Asgher, R. Parra-Saldivar, H.M. Iqbal, Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review. Int. J. Biol. Macromol. 99, 308–318 (2017)

    Article  Google Scholar 

  8. S.H.M. Azhar, R. Abdulla, S.A. Jambo, H. Marbawi, J.A. Gansau, A.A.M. Faik, K.F. Rodrigues, Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 10, 52–61 (2017)

    Google Scholar 

  9. S. Bandini, C. Gostoli, Ethanol removal from fermentation broth by gas membrane extraction. J. Membr. Sci. 70, 119–127 (1992)

    Article  Google Scholar 

  10. N.R. Baral, A. Shah, Techno-economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production. Biofuels Bioprod. Biorefin. 10, 70–88 (2016)

    Article  Google Scholar 

  11. J. Barford, Fundamental and Applied Aspects of Animal Cell Cultivation (NUS Press, Singapore, 1995)

    Google Scholar 

  12. P. Barghini, D. Di Gioia, F. Fava, M. Ruzzi, Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb. Cell Factories 6(1), 13 (2007)

    Article  Google Scholar 

  13. L. Bernad, A. Keller, D. Barth, M. Perrut, Separation of ethanol from aqueous solutions by supercritical carbon dioxide—Comparison between simulations and experiments. J. Supercrit. Fluids 6, 9–14 (1993)

    Article  Google Scholar 

  14. E.B. Bezerra, D.C. França, D.D.D.S. Morais, M.D.F. Rosa, J.P.S. Morais, E.M. Araújo, R.M.R. Wellen, Processing and properties of PCL/cotton linter compounds. Mater. Res. 20, 317–325 (2017)

    Article  Google Scholar 

  15. C. Brandenbusch, B. Bühler, P. Hoffmann, G. Sadowski, A. Schmid, Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxide. Biotechnol. Bioeng. 107, 642–651 (2010)

    Article  Google Scholar 

  16. C. Brazinha, D.S. Barbosa, J.G. Crespo, Sustainable recovery of pure natural vanillin from fermentation media in a single pervaporation step. Green Chem. 13, 2197–2203 (2011)

    Article  Google Scholar 

  17. A.R. Brochado, C. Matos, B.L. Møller, J. Hansen, U.H. Mortensen, K.R. Patil, Improved vanillin production in baker’s yeast through in silico design. Microb. Cell Factories 9(1), 84 (2010)

    Article  Google Scholar 

  18. M. Budich, G. Brunner, Supercritical fluid extraction of ethanol from aqueous solutions. J. Supercrit. Fluids 25, 45–55 (2003)

    Article  Google Scholar 

  19. K. Buzała, P. Przybysz, J. Rosicka-Kaczmarek, H. Kalinowska, Production of glucose-rich enzymatic hydrolysates from cellulosic pulps. Cellulose 22, 663–674 (2015)

    Article  Google Scholar 

  20. K.P. Buzała, H. Kalinowska, P. Przybysz, E. Małachowska, Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Sci. Technol. 51, 873–885 (2017)

    Article  Google Scholar 

  21. M. Carlquist et al., Process engineering for bioflavour production with metabolically active yeasts–a mini-review. Yeast 32, 123–143 (2015)

    Google Scholar 

  22. A.L. Carroll, S.H. Desai, S. Atsumi, Microbial production of scent and flavor compounds. Curr. Opin. Biotechnol. 37, 8–15 (2016). https://doi.org/10.1016/j.copbio.2015.09.003

    Article  Google Scholar 

  23. O. Catchpole et al., Integrated supercritical fluid extraction and bioprocessing. Am. J. Biochem. Biotechnol. 8, 263–287 (2012)

    Article  Google Scholar 

  24. R.N. Cavalcanti, C.L. Albuquerque, M.A.A. Meireles, Supercritical CO2 extraction of cupuassu butter from defatted seed residue: experimental data, mathematical modeling and cost of manufacturing. Food Bioprod. Process. 97, 48–62 (2016)

    Article  Google Scholar 

  25. M. Cengiz, O.D. Dincturk, H.T. Sahin, Fractional extraction and structural characterization of opium poppy and cotton stalks hemicelluloses. Pharmacogn. Mag. 6, 315 (2010)

    Article  Google Scholar 

  26. A. Chandrasekaran, S. Sivamani, Statistical modeling and optimization of pretreatment for fermentable sugars production from cotton gin waste. Energ. Source. Part A 40, 400–405 (2018)

    Article  Google Scholar 

  27. A.R. Choudhury, P. Bhattacharjee, G.S. Prasad, Development of suitable solvent system for downstream processing of biopolymer pullulan using response surface methodology. PLoS One 8, e77071 (2013)

    Article  Google Scholar 

  28. A. Converti, B. Aliakbarian, J. Domínguez, G.B. Vázquez, P. Perego, Microbial production of biovanillin. Braz. J. Microbiol. 41, 519–530 (2010)

    Article  Google Scholar 

  29. M. Cvjetko Bubalo, S. Vidović, I. Radojčić Redovniković, S. Jokić, Green solvents for green technologies. J. Chem. Technol. Biotechnol. 90, 1631–1639 (2015)

    Article  Google Scholar 

  30. J.-Y. Dai, L.-H. Ma, Z.-F. Wang, W.-T. Guan, Z.-L. Xiu, Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation. Bioprocess Biosyst. Eng. 40, 423–429 (2017a)

    Article  Google Scholar 

  31. J. Dai, W. Guan, L. Ma, Z. Xiu, Salting-out extraction of acetoin from fermentation broth using ethyl acetate and K 2 HPO 4. Sep. Purif. Technol. 184, 275–279 (2017b)

    Article  Google Scholar 

  32. K.K. Darani, M.R. Mozafari, Supercritical fluids technology in bioprocess industries: A review journal of biochemical. Technology 2, 144–152 (2010)

    Google Scholar 

  33. M. Dave, World cotton market (2018). https://cottonaustralia.com.au/cotton-library/fact-sheets/cotton-fact-file-the-world-cotton-market.

    Google Scholar 

  34. A.M. de Castro, J.A. López, L. dos Reis Castilho, D.M.G. Freire, Techno-economic analysis of a bioprocess for the production of multienzyme solutions from the cake of babassu industrial processing: Evaluation of five different inoculum propagation strategies. Biomass Convers. Biorefin. 4, 237–247 (2014)

    Article  Google Scholar 

  35. G.R. de la Vega, M.S. Cervantes, M.G. Alvarado, A. Romero-Martínez, P. Hegel, Fractionation of vanilla oleoresin by supercritical CO 2 technology. J. Supercrit. Fluids 108, 79–88 (2016)

    Article  Google Scholar 

  36. F.J. Dechow, Separation and Purification Techniques in Biotechnology (Noyes Publications, Park Ridge, 1989)

    Google Scholar 

  37. F.H. Deindoerfer, J.M. West, Rheological properties of fermentation broths. Adv. Appl. Microbiol. 2, 265–273 (1960)

    Article  Google Scholar 

  38. D. Di Gioia, L. Sciubba, L. Setti, F. Luziatelli, M. Ruzzi, D. Zanichelli, F. Fava, Production of biovanillin from wheat bran. Enzym. Microb. Technol. 41, 498–505 (2007)

    Article  Google Scholar 

  39. V.H.G. Díaz, G.O. Tost, Ethanol and isobutanol dehydration by heat-integrated distillation. Chem. Eng. Process. Process Intensif. 108, 117–124 (2016)

    Article  Google Scholar 

  40. B. Díaz-Reinoso, A. Moure, H. Domínguez, J.C. Parajó, Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 54, 2441–2469 (2006)

    Article  Google Scholar 

  41. P.M. Doran, Bioprocess Engineering Principles (Academic Press, London, 1995)

    Google Scholar 

  42. C. Effendi, M. Shanty, Y.-H. Ju, A. Kurniawan, M.-J. Wang, N. Indraswati, S. Ismadji, Measurement and mathematical modeling of solubility of buttery-odor substance (acetoin) in supercritical CO 2 at several pressures and temperatures. Fluid Phase Equilib. 356, 102–108 (2013)

    Article  Google Scholar 

  43. M.-H. Eom, B. Kim, H. Jang, S.-H. Lee, W. Kim, Y.-A. Shin, J.H. Lee, Dynamic modeling of a fermentation process with ex situ butanol recovery (ESBR) for continuous biobutanol production. Energy Fuel 29, 7254–7265 (2015)

    Article  Google Scholar 

  44. D. Essien, D. Pyle, Fermentation ethanol recovery by solvent extraction Sep. Biotechnol 23, 320–332 (1987)

    Google Scholar 

  45. Evolva, Vanillin: A sustainable production route. Evolva (2017). http://www.evolva.com/vanillin/

  46. C.E. Fabre, J.S. Condoret, A. Marty, Extractive fermentation of aroma with supercritical CO2. Biotechnol. Bioeng. 64, 392–400 (1999)

    Article  Google Scholar 

  47. A.M. Farías-Campomanes, M.A. Rostagno, M.A.A. Meireles, Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids 77, 70–78 (2013)

    Article  Google Scholar 

  48. Y. Feng, D. Meier, Supercritical carbon dioxide extraction of value-added chemicals from slow pyrolysis liquids, in Wood 2015: Innovations in Wood Materials and Processes 37 (2015)

    Google Scholar 

  49. T. Fornari, E.J. Hernández, A. Ruiz-Rodriguez, F.J. Señorans, G. Reglero, Phase equilibria for the removal of ethanol from alcoholic beverages using supercritical carbon dioxide. J. Supercrit. Fluids 50, 91–96 (2009)

    Article  Google Scholar 

  50. R. Ghosh, Principles of Bioseparations Engineering (World Scientific Publishing Co Inc, Singapore, 2006)

    Book  Google Scholar 

  51. M. Gifford, E. Biancani, W. Kearsley, W. Maluchnik, S. Farrell, M. Savelski, R. Hesketh, Economic Feasibility Study on the Supercritical Fluid Extraction of Edible Oils (Supercritical Fluid Technologies, Inc., USA, 2001)

    Google Scholar 

  52. I. Gil, A. Uyazán, J. Aguilar, G. Rodríguez, L. Caicedo, Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: Process simulation. Braz. J. Chem. Eng. 25, 207–215 (2008)

    Article  Google Scholar 

  53. Global Market Insight, Bio vanillin market size by application, price trend, competitive market share and forecast, 2016–2023 (2016). https://www.gminsights.com/industry-analysis/bio-vanillin-market. Accessed Feb 2017

  54. U. Gottschalk, Process Scale Purification of Antibodies (Wiley, Somerset, 2011)

    Google Scholar 

  55. W.J. Groot, H.S. Soedjak, P.B. Donck, R.G.J.M. van der Lans, K.C.A.M. Luyben, J.M.K. Timmer, Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction. Bioprocess Eng. 5, 203–216 (1990). https://doi.org/10.1007/bf00376227

    Article  Google Scholar 

  56. T. Gu, Liquid-liquid partitioning methods for bioseparations. Sep. Sci. Technol. 2. Elsevier,, 329–364 (2000)

    Google Scholar 

  57. A. Gupta, J.P. Verma, Sustainable bio-ethanol production from agro-residues: A review. Renew. Sust. Energ. Rev. 41, 550–567 (2015)

    Article  Google Scholar 

  58. A. Güvenç, Ü. Mehmetoglu, A. Çalimli, Supercritical CO2 extraction of ethanol from fermentation broth in a semicontinuous system. J. Supercrit. Fluids 13, 325–329 (1998). https://doi.org/10.1016/S0896-8446(98)00067-9

    Article  Google Scholar 

  59. A. Güvenç, Ü. Mehmetoğlu, A. Çalimli, Supercritical CO_2 extraction of ethanol. Turk. J. Chem. 23, 285–292 (1999)

    Google Scholar 

  60. R.G. Harrison, Bioseparation basics. Chem. Eng. Prog. 110, 36–42 (2014)

    Google Scholar 

  61. R.G. Harrison, P. Todd, P.W. Todd, S.R. Rudge, D.P. Petrides, Bioseparations Science and Engineering (Topics in Chemical Engineering, New York, 2015)

    Google Scholar 

  62. E. Heinzle, A.P. Biwer, C.L. Cooney, Development of Sustainable Bioprocesses: Modeling and Assessment (Wiley, Hoboken, 2007)

    Google Scholar 

  63. D. Hua, C. Ma, L. Song, S. Lin, Z. Zhang, Z. Deng, P. Xu, Enhanced vanillin production from ferulic acid using adsorbent resin. Appl. Microbiol. Biotechnol. 74, 783–790 (2007)

    Article  Google Scholar 

  64. N. Ikawa, Y. Nagase, T. Tada, S. Furuta, R. Fukuzato, Separation process of ethanol from aqueous solutions using supercritical carbon dioxide. Fluid Phase Equilib. 83, 167–174 (1993). https://doi.org/10.1016/0378-3812(93)87019-W

    Article  Google Scholar 

  65. A. Isci, G. Demirer, Biogas production potential from cotton wastes. Renew. Energy 32, 750–757 (2007)

    Article  Google Scholar 

  66. F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497–4559 (2015)

    Article  Google Scholar 

  67. P. Jiménez-Bonilla, Y. Wang, In situ biobutanol recovery from clostridial fermentations: A critical review. Crit. Rev. Biotechnol. 38, 469–482 (2018)

    Article  Google Scholar 

  68. G. Joana Gil-Chávez, J.A. Villa, J. Fernando Ayala-Zavala, J. Basilio Heredia, D. Sepulveda, E.M. Yahia, G.A. González-Aguilar, Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf. 12, 5–23 (2013)

    Article  Google Scholar 

  69. T. Kaneko, Y. Watanabe, H. Suzuki, Enhancement of diacetyl production by a diacetyl-resistant mutant of citrate-positive Lactococcus lactis ssp. lactis 3022 and by aerobic conditions of growth. J. Dairy Sci. 73, 291–298 (1990)

    Article  Google Scholar 

  70. S. Kaur, G. Dhillon, S. Brar, Increasing trend towards production of high value bioproducts from biomass feedstocks. Int. J. Waste Res. 3, 2252–5211 (2013)

    Google Scholar 

  71. S. Kaur, G.S. Dhillon, S.J. Sarma, S.K. Brar, K. Misra, H.S. Oberoi, Waste biomass: A prospective renewable resource for development of bio-based economy/processes, in Biotransformation of Waste Biomass into High Value Biochemicals, (Springer, New York, 2014), pp. 3–28

    Chapter  Google Scholar 

  72. C.R. Kennedy, The Flavor Rundown: Natural vs. Artificial Flavors (Harvard University: Science in the News, Boston, 2015), p. 21

    Google Scholar 

  73. K. Khosravi-Darani, E. Vasheghani-Farahani, Application of supercritical fluid extraction in biotechnology. Crit. Rev. Biotechnol. 25, 231–242 (2005)

    Article  Google Scholar 

  74. J.K. Kim, E.L. Iannotti, R. Bajpai, Extractive recovery of products from fermentation broths. Biotechnol. Bioprocess Eng. 4, 1–11 (1999)

    Article  Google Scholar 

  75. Ž. Knez, M. Škerget, A.P. Uzunalić, Phase equilibria of vanillins in compressed gases. J. Supercrit. Fluids 43, 237–248 (2007)

    Article  Google Scholar 

  76. B. Knutson, H. Strobel, S. Nokes, K. Dawson, J. Berberich, C. Jones, Effect of pressurized solvents on ethanol production by the thermophilic bacterium Clostridium thermocellum. J. Supercrit. Fluids 16, 149–156 (1999)

    Article  Google Scholar 

  77. F. Kollerup, A.J. Daugulis, Screening and identification of extractive fermentation solvents using a database. Can. J. Chem. Eng. 63, 919–927 (1985)

    Article  Google Scholar 

  78. J.M. Kordylas, Biotechnology for production of fruits, wines, and alcohol applications of biotechnology to traditional fermented foods: Report of an ad hoc panel of the board on science and technology for international development (National Academies Press (US), Washington (DC), 1992), pp. 170

    Google Scholar 

  79. A.A. Koutinas, B. Yepez, N. Kopsahelis, D.M. Freire, A.M. de Castro, S. Papanikolaou, I.K. Kookos, Techno-economic evaluation of a complete bioprocess for 2, 3-butanediol production from renewable resources. Bioresour. Technol. 204, 55–64 (2016)

    Article  Google Scholar 

  80. Q. Lang, C.M. Wai, Supercritical fluid extraction in herbal and natural product studies—A practical review. Talanta 53, 771–782 (2001)

    Article  Google Scholar 

  81. S.Y. Lee, H.U. Kim, Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015)

    Article  Google Scholar 

  82. K.H. Lee, J.H. Park, T.Y. Kim, H.U. Kim, S.Y. Lee, Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3, 149 (2007)

    Article  Google Scholar 

  83. X. Li, Y. Pang, R. Zhang, Compositional changes of cottonseed hull substrate during P. ostreatus growth and the effects on the feeding value of the spent substrate. Bioresour. Technol. 80, 157–161 (2001)

    Article  Google Scholar 

  84. J.S. Lim, Y.Y. Lee, H.S. Chun, Phase equilibria for carbon dioxide-ethanol-water system at elevated pressures. J. Supercrit. Fluids 7, 219–230 (1994)

    Article  Google Scholar 

  85. J.S. Lim, Y.-W. Lee, J.-D. Kim, Y.Y. Lee, H.-S. Chun, Mass-transfer and hydraulic characteristics in spray and packed extraction columns for supercritical carbon dioxide-ethanol-water system. J. Supercrit. Fluids 8, 127–137 (1995)

    Article  Google Scholar 

  86. J. Liu, Y. Kim, M.A. McHugh, Phase behavior of the vanillin–CO2 system at high pressures. J. Supercrit. Fluids 39, 201–205 (2006)

    Article  Google Scholar 

  87. W. Liu, Y.-J. Fu, Y.-G. Zu, M.-H. Tong, N. Wu, X.-L. Liu, S. Zhang, Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chem. 114, 334–339 (2009)

    Article  Google Scholar 

  88. Y. Liu, S. Zhang, Y.-C. Yong, Z. Ji, X. Ma, Z. Xu, S. Chen, Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem. 46, 390–394 (2011)

    Article  Google Scholar 

  89. Z.M. Lu, W. Xu, N.H. Yu, T. Zhou, G.Q. Li, J.S. Shi, Z.H. Xu, Recovery of aroma compounds from Zhenjiang aromatic vinegar by supercritical fluid extraction. Int. J. Food Sci. Technol. 46, 1508–1514 (2011)

    Article  Google Scholar 

  90. S. Macedo et al., Recovery of wine-must aroma compounds by supercritical CO 2. Food Bioprocess Technol. 1, 74–81 (2008)

    Article  Google Scholar 

  91. S. Maiti, G. Gallastegui, S. Kaur Brar, Y. LeBihan, G. Buelna, P. Drogui, M. Verma, Quest for sustainable bio-production and recovery of butanol as a promising solution to fossil fuel. Int. J. Energy Res. 40(4), 411–438 (2015)

    Article  Google Scholar 

  92. J.-M. Menet, D. Thiebaut, Countercurrent Chromatography (CRC Press, Boca Raton, 1999)

    Book  Google Scholar 

  93. G. Montague, A. Morris, A. Ward, Fermentation monitoring and control: A perspective. Biotechnol. Genet. Eng. Rev. 7, 147–188 (1989)

    Article  Google Scholar 

  94. D.M. Mousdale, Biofuels: Biotechnology, Chemistry, and Sustainable Development (CRC Press, Boca Raton, 2008)

    Book  Google Scholar 

  95. J.M. Newton, J. Vlahopoulou, Y. Zhou, Investigating and modelling the effects of cell lysis on the rheological properties of fermentation broths. Biochem. Eng. J. 121, 38–48 (2017)

    Article  Google Scholar 

  96. K. Nguyen, P. Barton, J.S. Spencer, Supercritical carbon dioxide extraction of vanilla. J. Supercrit. Fluids 4, 40–46 (1991)

    Article  Google Scholar 

  97. J. Nielsen, Fermentation monitoring, design and optimization, in Encyclopedia of Bioprocess Technology, (Wiley, New York, 2008)

    Google Scholar 

  98. M. Nomura, T. Bin, S.-i. Nakao, Selective ethanol extraction from fermentation broth using a silicalite membrane. Sep. Purif. Technol. 27, 59–66 (2002)

    Article  Google Scholar 

  99. N.M. Nor, M.S. Mohamed, T.C. Loh, H.L. Foo, R.A. Rahim, J.S. Tan, R. Mohamad, Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine–methionine biosynthesis by Pediococcus pentosaceus RF-1. Biotechnol. Biotechnol. Equip. 31, 1–13 (2017)

    Article  Google Scholar 

  100. A. Paz, D. Outeiriño, R. Pinheiro de Souza Oliveira, J.M. Domínguez, Fed-batch production of vanillin by Bacillus aryabhattai BA03. New Biotechnol. 40, 186–191 (2018). https://doi.org/10.1016/j.nbt.2017.07.012

    Article  Google Scholar 

  101. C. Pereira, R. Rocha, F.L.P. Pessoa, M. Mendes, Phorbol esters extraction from Jatropha curcas seed cake using supercritical carbon dioxide, in III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias (Colômbia) (2013)

    Google Scholar 

  102. M. Perrut, Supercritical fluid applications: Industrial developments and economic issues. Ind. Eng. Chem. Res. 39, 4531–4535 (2000)

    Article  Google Scholar 

  103. D. Petrides, Bioprocess design and economics. Biosep. Sci. Eng. 2, 1–83 (2000)

    Google Scholar 

  104. C.A. Pieck, C. Crampon, F. Charton, E. Badens, Multi-scale experimental study and modeling of the supercritical fractionation process. J. Supercrit. Fluids 105, 158–169 (2015)

    Article  Google Scholar 

  105. I.M. Prado, C.L.C. Albuquerque, R.N. Cavalcanti, M.A.A. Meireles, Use of a Commercial Process Simulator to Estimate the Cost of Manufacturing (COM) of Carotenoids Obtained Via Supercritical Technology from Palm and. Paper Presented at the Ninety International Symposium on Supercritical Fluids, Arcachon, France (2009)

    Google Scholar 

  106. J.M. Prado et al., Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J. Food Eng. 109, 249–257 (2012)

    Article  Google Scholar 

  107. H. Priefert, J. Rabenhorst, A. Steinbüchel, Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56, 296–314 (2001)

    Article  Google Scholar 

  108. M.R. Pursell, M.A. Mendes-Tatsis, D.C. Stuckey, Effect of fermentation broth and biosurfactants on mass transfer during liquid–liquid extraction. Biotechnol. Bioeng. 85, 155–165 (2004)

    Article  Google Scholar 

  109. K. Rajendran, E. Drielak, V.S. Varma, S. Muthusamy, G. Kumar, Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review. Biomass Conver. Bioref. 4, 1–13 (2018)

    Article  Google Scholar 

  110. D.T. Santos, P.C. Veggi, M.A.A. Meireles, Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J. Food Eng. 108, 444–452 (2012)

    Article  Google Scholar 

  111. P.K. Sarangi, S. Nanda, H. Sahoo, Maximization of vanillin production by standardizing different cultural conditions for ferulic acid degradation. NY Sci. J. 3, 77–79 (2010)

    Google Scholar 

  112. S.J. Sarma, G.S. Dhillon, K. Hegde, S.K. Brar, M. Verma, Utilization of agro-industrial waste for the production of aroma compounds and fragrances, in Biotransformation of Waste Biomass into High Value Biochemicals, (Springer, New York, 2014), pp. 99–115

    Chapter  Google Scholar 

  113. M. Schaechter, Encyclopedia of Microbiology (Academic Press, Amsterdam, 2009)

    Google Scholar 

  114. W.D. Seider, J.D. Seader, D.R. Lewin, Product & Process Design Principles: Synthesis, Analysis and Evaluation, (With CD) (Wiley, New York, 2009)

    Google Scholar 

  115. A. Shah, M. Darr, A techno-economic analysis of the corn stover feedstock supply system for cellulosic biorefineries. Biofuels Bioprod. Biorefin. 10, 542–559 (2016)

    Article  Google Scholar 

  116. R. Sharma-Shivappa, Y. Chen, Conversion of cotton wastes to bioenergy and value-added products. Trans. ASABE 51, 2239–2246 (2008)

    Article  Google Scholar 

  117. G. Sindhwani, I. Uk, V. Aeri, Microbial transformation of eugenol to vanillin. J. Microbiol. Biotechnol. Res. 2, 313–318 (2012)

    Google Scholar 

  118. A. Singh, G.P. Rangaiah, Process development and optimization of bioethanol recovery and dehydration by distillation and vapor permeation for multiple objectives. Differ. Evol. Chem. Eng. 6, 289 (2017a)

    Article  Google Scholar 

  119. A. Singh, G.P. Rangaiah, Review of technological advances in bioethanol recovery and dehydration. Ind. Eng. Chem. Res. 56, 5147–5163 (2017b)

    Article  Google Scholar 

  120. S.P. Singh, E. Ekanem, T. Wakefield Jr., S. Comer, Emerging importance of bio-based products and bio-energy in the US economy: Information dissemination and training of students. Int. Food Agribus. Manag. Rev. 5, 14 (2003)

    Google Scholar 

  121. M. Škerget, L. Čretnik, Ž. Knez, M. Škrinjar, Influence of the aromatic ring substituents on phase equilibria of vanillins in binary systems with CO 2. Fluid Phase Equilib. 231, 11–19 (2005)

    Article  Google Scholar 

  122. H. Sovová, Modeling the supercritical fluid extraction of essential oils from plant materials. J. Chromatogr. A 1250, 27–33 (2012). https://doi.org/10.1016/j.chroma.2012.05.014

    Article  Google Scholar 

  123. W.H. Streng, Characterization of Compounds in Solution: Theory and Practice (Springer, Boston, 2012)

    Google Scholar 

  124. J. Sun et al., Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol. Bioprocess Eng. 17, 598–605 (2012). https://doi.org/10.1007/s12257-011-0587-4

    Article  Google Scholar 

  125. A. Taiwo, T. Madzimbamuto, T. Ojumu, Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies 11, 1740 (2018a)

    Article  Google Scholar 

  126. A.E. Taiwo, T.V. Ojumu, T.N. Madzimbamuto, Statistical optimization of acetoin production using corn steep liquor as a low-cost nitrogen source by Bacillus Subtilis CICC 10025, in Renewable Resources and Biorefineries, (IntechOpen, London, 2018b)

    Google Scholar 

  127. M. Tan, S. Liew, M.Y. Maskat, W.W. Aida, H. Osman, Optimization of vanillin production using isoeugenol as substrate by Aspergillus Niger I-1472. Int. Food Res. J. 22, 1651 (2015)

    Google Scholar 

  128. V. Tarabanko, Y.V. Chelbina, V. Sokolenko, N. Tarabanko, A study of vanillin extraction by octylamine. Solvent Extr. Ion Exch. 25, 99–107 (2007)

    Article  Google Scholar 

  129. R.M. Teixeira, D. Cavalheiro, J. Ninow, A. Furigo Jr., Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Braz. J. Chem. Eng. 19, 181–186 (2002). https://doi.org/10.1590/S0104-66322002000200014

    Article  Google Scholar 

  130. Y. Tian, Y. Fan, J. Liu, X. Zhao, W. Chen, Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electron. J. Biotechnol. 19, 41–49 (2016). https://doi.org/10.1016/j.ejbt.2015.11.005

    Article  Google Scholar 

  131. A. Tilay, M. Bule, U. Annapure, Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. J. Agric. Food Chem. 58, 4401–4405 (2010)

    Article  Google Scholar 

  132. F.Ö. Ütkür, T. Thanh Tran, J. Collins, C. Brandenbusch, G. Sadowski, A. Schmid, B. Bühler, Integrated organic–aqueous biocatalysis and product recovery for quinaldine hydroxylation catalyzed by living recombinant Pseudomonas putida. J. Ind. Microbiol. Biotechnol. 39, 1049–1059 (2012)

    Article  Google Scholar 

  133. P. Van Hee, M. Hoeben, R. Van der Lans, L. Van der Wielen, Strategy for selection of methods for separation of bioparticles from particle mixtures. Biotechnol. Bioeng. 94, 689–709 (2006)

    Article  Google Scholar 

  134. L.M. Vane, F.R. Alvarez, L. Rosenblum, S. Govindaswamy, Efficient ethanol recovery from yeast fermentation broth with integrated distillation–membrane process. Ind. Eng. Chem. Res. 52, 1033–1041 (2012)

    Article  Google Scholar 

  135. S. Vani, R.K. Sukumaran, S. Savithri, Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresour. Technol. 188, 128–135 (2015)

    Article  Google Scholar 

  136. P.C. Veggi, R.N. Cavalcanti, M.A.A. Meireles, Production of phenolic-rich extracts from Brazilian plants using supercritical and subcritical fluid extraction: Experimental data and economic evaluation. J. Food Eng. 131, 96–109 (2014)

    Article  Google Scholar 

  137. P.T. Viana, F.A. Teixeira, A.J.V. Pires, G.G.P.D. Carvalho, Figueiredo MPD, J.H.A.D. Santana, Losses and nutritional value of elephant grass silage with inclusion levels of cottonseed meal. Acta Sci. Anim. Sci. 35, 139–144 (2013)

    Article  Google Scholar 

  138. S. Vijayan, D.P. Byskal, L.P. Buckley, Separation of oil from fried chips by a supercritical extraction process; an overview of bench-scale test experience and process economics. In Supercritical Fluids Processing of Food and Biomaterials, ed. by S. Rizvi (Chapman and Hall, Glasgow, 1994), pp. 74–92

    Google Scholar 

  139. Z. Wang, K. Chen, J. Li, Q. Wang, J. Guo, Separation of vanillin and syringaldehyde from oxygen delignification spent liquor by macroporous resin adsorption. Clean Soil. Air. Water 38, 1074–1079 (2010)

    Article  Google Scholar 

  140. P.N. Whittington, Fermentation broth clarification techniques. Appl. Biochem. Biotechnol. 23, 91–121 (1990)

    Article  Google Scholar 

  141. Williams DF (1981) Fundamental Aspects of Biocompatibility 1. CRC Press LLC, Boca Raton

    Google Scholar 

  142. K. Wilson, J. Walker, Principles and Techniques of Practical Biochemistry (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  143. R.E. Wrolstad et al., Handbook of Food Analytical Chemistry, Volume 1: Water, Proteins, Enzymes, Lipids, and Carbohydrates (Wiley, Hoboken, 2005)

    Google Scholar 

  144. J. Wu et al., Recovery of acetoin from the ethanol–acetoin–acetic acid ternary mixture based on adsorption methodology using a hyper-cross-linked resin. Ind. Eng. Chem. Res. 53, 12411–12419 (2014)

    Article  Google Scholar 

  145. W. Wu, K. Yenkie, C.T. Maravelias, A superstructure-based framework for bio-separation network synthesis. Comput. Chem. Eng. 96, 1–17 (2017)

    Article  Google Scholar 

  146. Z. Xiao, P. Liu, J.Y. Qin, P. Xu, Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl. Microbiol. Biotechnol. 74, 61–68 (2007). https://doi.org/10.1007/s00253-006-0646-5

    Article  Google Scholar 

  147. H. Xu, S. Jia, J. Liu, Production of acetoin by Bacillus subtilis TH-49, in Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on, 16–18 April 2011, (IEEE, Piscataway, 2011), pp. 1524–1527

    Chapter  Google Scholar 

  148. S.-T. Yang, Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications (Elsevier, Burlington, 2011)

    Google Scholar 

  149. D. Yiyong, C. Hong, A new bioprocess to produce natural vanillin by microbial fermentation. Flavour Frag. Cosmet. 3, 003 (2011)

    Google Scholar 

  150. M. Zabkova, E.B. da Silva, A. Rodrigues, Recovery of vanillin from Kraft lignin oxidation by ion-exchange with neutralization. Sep. Purif. Technol. 55, 56–68 (2007)

    Article  Google Scholar 

  151. M. Žabková, E.B. da Silva, A. Rodrigues, Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J. Membr. Sci. 301, 221–237 (2007)

    Article  Google Scholar 

  152. Q.-F. Zhang, Z.-T. Jiang, H.-J. Gao, R. Li, Recovery of vanillin from aqueous solutions using macroporous adsorption resins. Eur. Food Res. Technol. 226, 377–383 (2008)

    Article  Google Scholar 

  153. L. Zhang, S. Chen, H. Xie, Y. Tian, K. Hu, Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol. 87, 1551–1557 (2012). https://doi.org/10.1002/jctb.3791

    Article  Google Scholar 

  154. Y. Zhang, S. Li, L. Liu, J. Wu, Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour. Technol. 130, 256–260 (2013)

    Article  Google Scholar 

  155. S. Zhang, X. Huang, C. Qu, Y. Suo, Z. Liao, J. Wang, Extractive fermentation for enhanced isopropanol and n-butanol production with mixtures of water insoluble aliphatic acids and oleyl alcohol. Biochem. Eng. J. 117, 112–120 (2017)

    Article  Google Scholar 

  156. Q.-W. Zhang, L.-G. Lin, W.-C. Ye, Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 13(20), 20 (2018)

    Article  Google Scholar 

  157. L. Zheng, P. Zheng, Z. Sun, Y. Bai, J. Wang, X. Guo, Production of vanillin from waste residue of rice bran oil by Aspergillus Niger and Pycnoporus cinnabarinus. Bioresour. Technol. 98, 1115–1119 (2007)

    Article  Google Scholar 

  158. C. Zidi, R. Tayeb, N. Boukhili, M. Dhahbi, A supported liquid membrane system for efficient extraction of vanillin from aqueous solutions. Sep. Purif. Technol. 82, 36–42 (2011)

    Article  Google Scholar 

  159. V.G. Zuin, L.Z. Ramin, Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem. 376, 3 (2018)

    Article  Google Scholar 

  160. M. Yusoff, H. Akita, M. Hassan, S. Fujimoto, M. Yoshida, N. Nakashima, & T. Hoshino, Production of acetoin from hydrothermally pretreated oil mesocarp fiber using metabolically engineered Escherichia coli in a bioreactor system. Bioresour. Technol. 245, 1040–1048 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of Cape Peninsula University of Technology (CPUT) and National Research Foundation (NRF) to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Ojumu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taiwo, A.E., Madzimbamuto, T.F., Ojumu, T.V. (2020). Development of an Integrated Process for the Production and Recovery of Some Selected Bioproducts From Lignocellulosic Materials. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38032-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38031-1

  • Online ISBN: 978-3-030-38032-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics