Skip to main content

FEM Simulation for a MEMS Vibratory Tuning Fork Gyroscope

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 104))

Included in the following conference series:

  • 973 Accesses

Abstract

This paper presents a FEM simulation for a MEMS vibratory tuning fork gyroscope with a connecting diamond-shaped frame. This structure is designed and analyzed using ANSYS software to obtain the dynamic parameters of the proposed tuning fork gyroscope. The resonant frequency of the sensing and driving mode is 11582 Hz and 11605 Hz respectively with 23 Hz mismatch frequency. The equivalent stiffness of the connecting frame in they-direction is determined to be 2360 N/m and the stiffness of the flexible beams in driving and sensing are 858 and 725 N/m, respectively. The response of the proof-mass reflects the input angular velocity. The results will be used to set up in an analytical problem to study the dynamic response of the proposed tuning fork gyroscope in the future works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86, 1640–1659 (1998)

    Article  Google Scholar 

  2. Xia, D., Yu, C., Kong, L.: The development of micromachined gyroscope structure and circuitry technology. Sensors 14, 1394–1473 (2014)

    Article  Google Scholar 

  3. Shkel, A.M.: Type I and type II micromachined vibratory gyroscopes. In: Proceedings of the IEEE/ION PLANS, SanDiego, USA, pp. 586–592 (2006)

    Google Scholar 

  4. Acar, C., Shkel, A.M.: MEMS Vibratory Gyroscopes - Structural Approaches to Improve Robustness. Springer (2009)

    Google Scholar 

  5. Apostolyuk, V., Tay, F.E.: Dynamics of micromechanical coriolis vibratory gyroscopes. Sens. Lett. 2, 1–8 (2005)

    Google Scholar 

  6. Choi, B., Lee, S.-Y., Kim, T., Baek, S.S.: Dynamic characteristics of vertically coupled structures and the design of a decoupled micro-gyroscope. Sensors 8, 3706–3718 (2008)

    Article  Google Scholar 

  7. Guan, Y.W., Gao, S.Q., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468–483 (2016)

    Article  Google Scholar 

  8. Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254 (2016)

    Article  Google Scholar 

  9. Yoon, S.W., Lee, S., Najafi, K.: Vibration-induced errors in MEMS tuning fork gyroscopes. Sens. Actuators A: Phys. (2012). https://doi.org/10.1016/j.sna.2012.04.022

    Article  Google Scholar 

  10. Guan, Y., Gao, S., Liu, H., Niu, S.: Acceleration sensitivity of tuning fork gyroscopes: theoretical model, simulation and experimental verification. Microsyst. Technol. 21, 1313–1323 (2014)

    Article  Google Scholar 

  11. Trinh, T.Q., Nguyen, L.Q., Dao, D.V., Chu, H.M., Vu, H.N.: Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsyst. Technol. 20(2), 281–289 (2014)

    Article  Google Scholar 

  12. Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines. 8(2), 42 (2017). https://doi.org/10.3390/mi8020042

    Article  Google Scholar 

  13. Trusov, A.A., Schofield, A.R., Shkel, A.M.: Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering. Sens. Actuators A: Phys. 165(1), 26–34 (2013)

    Article  Google Scholar 

  14. Zaman, M., Sharma, A., Hao, Z., Ayazi, F.: A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability. J. Microelectromech. Syst. 17(6), 1526–1536 (2008)

    Article  Google Scholar 

  15. Huilin, S., Yongpeng, W.: Modeling and simulation for a vibratory tuning-fork MEMS gyroscope. In: Proceeding of Third International Conference on Measuring Technology and Mechatronics Automation, pp. 605–608 June 2011

    Google Scholar 

  16. The, V.V., Dung, T.Q., Trinh, C.D.: Dynamic analysis of a single MEMS vibratory gyroscope with decoupling connection between driving frame and sensing proof mass. Int. J. Appl. Eng. Res. 13(17), 5554–5561 (2018)

    Google Scholar 

  17. The, V.V., Dung, T.Q., Hoan, V.M., Trinh, C.D.: Study of dynamic response of a diamond-shaped micro silicon frame. J. Sci. Technol. Mil. Tech. Acad. 186, 34–42 (2017)

    Google Scholar 

  18. Allen, J.J.: Microelectromechanical System design. Taylor and Francis Group (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Van The .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

The, V.V., Dung, T.Q., Lien, D.T.K. (2020). FEM Simulation for a MEMS Vibratory Tuning Fork Gyroscope. In: Sattler, KU., Nguyen, D., Vu, N., Tien Long, B., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2019. Lecture Notes in Networks and Systems, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-37497-6_42

Download citation

Publish with us

Policies and ethics