Skip to main content

Pancreatic Stellate Cells: The Key Orchestrator of The Pancreatic Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1234))

Abstract

Pancreatic cancer is one of the most challenging adenocarcinomas due to its hostile molecular behavior and complex tumor microenvironment. It has been recently postulated that pancreatic stellate cells (PSCs), the resident lipid-storing cells of the pancreas, are important components of the tumor microenvironment as they can transdifferentiate into highly proliferative myofibroblasts in the context of tissue injury. Targeting tumor-stromal crosstalk in the tumor microenvironment has emerged as a promising therapeutic strategy against pancreatic cancer progression and metastasis. This chapter brings a broad view on the biological and pathological role of PSCs in the pancreas, activated stellate cells in the onset of tissue fibrosis, and tumor progression with particular emphasis on the bidirectional interactions between tumor cells and PSCs. Further, potential therapeutic regimens targeting activated PSCs in the pre-clinical and clinical trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155. Erratum in: Cancer Res. 2014;74(14):4006. PubMed PMID: 24840647.

    Article  CAS  PubMed  Google Scholar 

  2. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP (2016) Pancreatic cancer. Nat Rev Dis Primers 2:16022. https://doi.org/10.1038/nrdp.2016.22. PMID: 27158978.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442. PubMed PMID: 29313949.

    Article  PubMed  Google Scholar 

  4. Erkan M, Reiser-Erkan C, Michalski CW, Kong B, Esposito I, Friess H, Kleeff J (2012) The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Curr Mol Med 12(3):288–303. PMID: 22272725.

    Article  CAS  PubMed  Google Scholar 

  5. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43(1):128–133. PMID: 9771417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Siech M, Beger H, Grünert A, Adler G (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115(2):421–432. PMID: 9679048.

    Article  CAS  PubMed  Google Scholar 

  7. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. PMID: 24202395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas D, Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer 2019; 18(1):14. PubMed PMID: 30665410.

    Google Scholar 

  9. Wilson JS, Pirola RC, Apte MV (2014) Stars and stripes in pancreatic cancer: role of stellate cells and stroma in cancer progression. Front Physiol 5:52. PubMed PMID: 24592240.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Watari N, Hotta Y, Mabuchi Y (1982) Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anat Jpn 58(4–6):837–858. PMID: 7122019.

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe T, Masamune A, Kikuta K, Hirota M, Kume K, Satoh K, Shimosegawa T (2009) Bone marrow contributes to the population of pancreatic stellate cells in mice. Am J Physiol Gastrointest Liver Physiol 297(6):G1138–G1146. PMID: 19808658.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto G, Taura K, Iwaisako K, Asagiri M, Ito S, Koyama Y, Tanabe K, Iguchi K, Satoh M, Nishio T, Okuda Y, Ikeno Y, Yoshino K, Seo S, Hatano E, Uemoto S (2017) Pancreatic stellate cells have distinct characteristics from hepatic stellate cells and are not the unique origin of collagen-producing cells in the pancreas. Pancreas 46(9):1141–1151. PMID: 28902784.

    Article  CAS  PubMed  Google Scholar 

  13. Ino K, Masuya M, Tawara I, Miyata E, Oda K, Nakamori Y, Suzuki K, Ohishi K, Katayama N (2014) Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells. PLoS One 9(1):e84889. PMID: 24416305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rosewicz S, Stier U, Brembeck F, Kaiser A, Papadimitriou CA, Berdel WE, Wiedenmann B, Riecken EO (1995) Retinoids: effects on growth, differentiation, and nuclear receptor expression in human pancreatic carcinoma cell lines. Gastroenterology 109(5):1646–1660. PMID: 7557150.

    Article  CAS  PubMed  Google Scholar 

  15. McCarroll JA, Phillips PA, Santucci N, Pirola RC, Wilson JS, Apte MV (2006) Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut 55(1):79–89. PMID: 16043492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Masamune A, Watanabe T, Kikuta K, Shimosegawa T (2009) Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 7(11 Suppl):S48–S54. PubMed PMID: 19896099.

    Article  CAS  PubMed  Google Scholar 

  17. Apte MV, Wilson JS, Lugea A, Pandol SJ (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144(6):1210–1219. PMID: 23622130.

    Article  PubMed  Google Scholar 

  18. Lardon J, Rooman I, Bouwens L (2002) Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol 117(6):535–540. PMID: 12107504.

    Article  CAS  PubMed  Google Scholar 

  19. Ding Z, Maubach G, Masamune A, Zhuo L (2009) Glial fibrillary acidic protein promoter targets pancreatic stellate cells. Dig Liver Dis 41(3):229–236. PMID: 18602878.

    Article  CAS  PubMed  Google Scholar 

  20. Omary MB, Coulombe PA, McLean WH (2004) Intermediate filament proteins and their associated diseases. N Engl J Med 351(20):2087–2100. PMID: 15537907.

    Article  CAS  PubMed  Google Scholar 

  21. Mato E, Lucas M, Petriz J, Gomis R, Novials A (2009) Identification of a pancreatic stellate cell population with properties of progenitor cells: new role for stellate cells in the pancreas. Biochem J 421(2):181–191. PMID: 19379129.

    Article  CAS  PubMed  Google Scholar 

  22. Bachem MG, Schünemann M, Ramadani M, Siech M, Beger H, Buck A, Zhou S, Schmid-Kotsas A, Adler G (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128(4):907–921. PMID: 15825074.

    Article  CAS  PubMed  Google Scholar 

  23. Phillips PA, McCarroll JA, Park S, Wu MJ, Pirola R, Korsten M, Wilson JS, Apte MV (2003) Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52(2):275–282. PMID: 12524413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, Pirola RC, Wilson JS (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44(4):534–541. PMID: 10075961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masamune A, Kikuta K, Satoh M, Satoh A, Shimosegawa T (2002) Alcohol activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. J Pharmacol Exp Ther 302(1):36–42. PMID: 12065697.

    Article  CAS  PubMed  Google Scholar 

  26. Mews P, Phillips P, Fahmy R, Korsten M, Pirola R, Wilson J, Apte M (2002) Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut 50(4):535–541. PMID: 11889076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupte A, Goede D, Tuite R, Forsmark CE (2018) Chronic pancreatitis. BMJ 361:k2126. PMID: 29880587.

    Article  PubMed  Google Scholar 

  28. Kloppel G, Detlefsen S, Feyerabend B (2004) Fibrosis of the pancreas: the initial tissue damage and the resulting pattern. Virchows Arch 445(1):1–8. PMID: 15138818.

    Article  PubMed  Google Scholar 

  29. Casini A, Galli A, Pignalosa P, Frulloni L, Grappone C, Milani S, Pederzoli P, Cavallini G, Surrenti C (2000) Collagen type I synthesized by pancreatic periacinar stellate cells (PSC) co-localizes with lipid peroxidation-derived aldehydes in chronic alcoholic pancreatitis. J Pathol 192(1):81–89. PubMed PMID: 10951404.

    Article  CAS  PubMed  Google Scholar 

  30. Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, Williams EJ, Johnson PA, Johnson CD, Bateman AC, Fine DR, Iredale JP (2002) Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 160(5):1787–1798. PMID: 12000730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Q, Tian Y, Zhang J, Zhang H, Gu F, Lu Y, Zou S, Chen Y, Sun P, Xu M, Sun X, Xia C, Chi H, Ying Zhu A, Tang D, Wang D (2017) Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget 8(60):102721–102738. PMID: 29254283.

    PubMed  PubMed Central  Google Scholar 

  32. Tjomsland V, Pomianowska E, Aasrum M, Sandnes D, Verbeke CS, Gladhaug IP (2016) Profile of MMP and TIMP expression in human pancreatic stellate cells: regulation by IL-1α and TGFβ and implications for migration of pancreatic cancer cells. Neoplasia 18(7):447–456. PMID: 27435927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DH, Pirola RC, McCaughan GW, Ramm GA, Wilson JS (1999) Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 155(4):1087–1095. PMID: 10514391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura T, Ito T, Oono T, Igarashi H, Fujimori N, Uchida M, Niina Y, Yasuda M, Suzuki K, Takayanagi R (2011) Bacterial DNA promotes proliferation of rat pancreatic stellate cells thorough toll-like receptor 9: potential mechanisms for bacterially induced fibrosis. Pancreas 40(6):823–831. PMID: 21747311.

    Article  CAS  PubMed  Google Scholar 

  35. Kleeff J, Whitcomb DC, Shimosegawa T, Esposito I, Lerch MM, Gress T, Mayerle J, Drewes AM, Rebours V, Akisik F, Muñoz JED, Neoptolemos JP (2017) Chronic pancreatitis. Nat Rev Dis Primers 3:17060. PMID: 28880010.

    Article  PubMed  Google Scholar 

  36. Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, Ouellette MM, Hollingsworth MA (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14(19):5995–6004. PubMed PMID: 18829478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu Z, Vonlaufen A, Phillips PA, Fiala-Beer E, Zhang X, Yang L, Biankin AV, Goldstein D, Pirola RC, Wilson JS, Apte MV (2010) Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol 177(5):2585–2596. PMID: 20934972.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koninger J, Giese T, di Mola FF, Wente MN, Esposito I, Bachem MG, Giese NA, Buchler MW, Friess H (2004) Pancreatic tumor cells influence the composition of the extracellular matrix. Biochem Biophys Res Commun 322(3):943–949. PMID: 15336555.

    Article  PubMed  CAS  Google Scholar 

  39. Suklabaidya S, Dash P, Das B, Suresh V, Sasmal PK, Senapati S (2018) Experimental models of pancreatic cancer desmoplasia. Lab Investig 98(1):27–40. PMID: 29155423.

    Article  CAS  PubMed  Google Scholar 

  40. Vaquero EC, Edderkaoui M, Nam KJ, Gukovsky I, Pandol SJ, Gukovskaya AS (2003) Extracellular matrix proteins protect pancreatic cancer cells from death via mitochondrial and nonmitochondrial pathways. Gastroenterology 125(4):1188–1202. PMID: 14517801.

    Article  CAS  PubMed  Google Scholar 

  41. Malik R, Lelkes PI, Cukierman E (2015) Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol 33(4):230–236. PMID: 25708906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moir JA, Mann J, White SA (2015) The role of pancreatic stellate cells in pancreatic cancer. Surg Oncol 24(3):232–238. PMID: 26080604.

    Article  PubMed  Google Scholar 

  43. Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, Lin Q, Liu Y, Li Z, Chen R (2018) Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis 9(11):1065. PMID: 30337520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379. PMID: 11357145.

    Article  CAS  PubMed  Google Scholar 

  45. Lugea A, Waldron RT (2017) Exosome-mediated intercellular communication between stellate cells and cancer cells in pancreatic ductal adenocarcinoma. Pancreas 46(1):1–4. PMID: 27977625.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoshida N, Masamune A, Hamada S, Kikuta K, Takikawa T, Motoi F, Unno M, Shimosegawa T (2017) Kindlin-2 in pancreatic stellate cells promotes the progression of pancreatic cancer. Cancer Lett 390:103–114. PMID: 28093281.

    Article  CAS  PubMed  Google Scholar 

  47. Lohr M, Schmidt C, Ringel J, Kluth M, Müller P, Nizze H, Jesnowski R (2001) Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 61(2):550–555. PMID: 11212248.

    CAS  PubMed  Google Scholar 

  48. Satoh K, Shimosegawa T, Hirota M, Koizumi M, Toyota T (1998) Expression of transforming growth factor beta1 (TGFbeta1) and its receptors in pancreatic duct cell carcinoma and in chronic pancreatitis. Pancreas 16(4):468–474. PMID: 9598806.

    Article  CAS  PubMed  Google Scholar 

  49. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A (2015) Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 147:22–31. PMID: 25444759.

    Article  CAS  PubMed  Google Scholar 

  50. Satoh K, Hamada S, Shimosegawa T (2015) Involvement of epithelial to mesenchymal transition in the development of pancreatic ductal adenocarcinoma. J Gastroenterol 50(2):140–146. PMID: 25216997.

    Article  CAS  PubMed  Google Scholar 

  51. Kikuta K, Masamune A, Watanabe T, Ariga H, Itoh H, Hamada S, Satoh K, Egawa S, Unno M, Shimosegawa T (2010) Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun 403(3–4):380–384. PMID: 21081113.

    Article  CAS  PubMed  Google Scholar 

  52. Erkan M, Reiser-Erkan C, Michalski CW, Deucker S, Sauliunaite D, Streit S, Esposito I, Friess H, Kleeff J (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11(5):497–508. PMID: 19412434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kanno A, Satoh K, Masamune A, Hirota M, Kimura K, Umino J, Hamada S, Satoh A, Egawa S, Motoi F, Unno M, Shimosegawa T (2008) Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int J Cancer 122(12):2707–2718. PMID: 18381746.

    Article  CAS  PubMed  Google Scholar 

  54. Karger A, Fitzner B, Brock P, Sparmann G, Emmrich J, Liebe S, Jaster R (2008) Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells. Cell Signal 20(10):1865–1872. PMID: 18639630.

    Article  CAS  PubMed  Google Scholar 

  55. Nielsen MF, Mortensen MB, Detlefsen S (2016) Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol 22(9):2678–2700. PMID: 26973408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phillips P (2012) Chapter 3: Pancreatic stellate cells and fibrosis. In: Grippo PJ, Munshi HG (eds) Pancreatic cancer and tumor microenvironment. Transworld Research Network, Trivandrum (India). PubMed PMID: 22876388.

    Google Scholar 

  57. Javle M, Li Y, Tan D, Dong X, Chang P, Kar S, Li D (2014) Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS One 9(1):e85942. PMID: 24465802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Izumiya M, Kabashima A, Higuchi H, Igarashi T, Sakai G, Iizuka H, Nakamura S, Adachi M, Hamamoto Y, Funakoshi S, Takaishi H, Hibi T (2012) Chemoresistance is associated with cancer stem cell-like properties and epithelial-to-mesenchymal transition in pancreatic cancer cells. Anticancer Res 32(9):3847–3853. PMID: 22993328.

    CAS  PubMed  Google Scholar 

  59. Shinozaki S, Ohnishi H, Hama K, Kita H, Yamamoto H, Osawa H, Sato K, Tamada K, Mashima H, Sugano K (2008) Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J Cell Physiol 216(1):38–46. PMID: 18286538.

    Article  CAS  PubMed  Google Scholar 

  60. Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, de Sauvage FJ (2009) Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A 106(11):4254–4259. PMID: 19246386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779. PMID: 23151663.

    Article  CAS  PubMed  Google Scholar 

  62. Hu Y, Wan R, Yu G, Shen J, Ni J, Yin G, Xing M, Chen C, Fan Y, Xiao W, Xu G, Wang X, Hu G (2014) Imbalance of Wnt/Dkk negative feedback promotes persistent activation of pancreatic stellate cells in chronic pancreatitis. PLoS One 9(4):e95145. PMID: 24747916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Froeling FE, Mirza TA, Feakins RM, Seedhar A, Elia G, Hart IR, Kocher HM (2009) Organotypic culture model of pancreatic cancer demonstrates that stromal cells modulate E-cadherin, beta-catenin, and Ezrin expression in tumor cells. Am J Pathol 175(2):636–648. PMID: 19608876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu Y, Li H, Huang C, Zhao T, Zhang H, Zheng C, Ren H, Hao J (2015) Wnt2 protein plays a role in the progression of pancreatic cancer promoted by pancreatic stellate cells. Med Oncol 32(4):97. PMID: 25731618.

    Article  PubMed  CAS  Google Scholar 

  65. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183. PMID: 11294822.

    CAS  PubMed  Google Scholar 

  66. Jaster R, Sparmann G, Emmrich J, Liebe S (2002) Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut. 51(4):579–84. PubMed PMID: 12235084; PubMed Central PMCID: PMC1773393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCarroll JA, Phillips PA, Park S, Doherty E, Pirola RC, Wilson JS, Apte MV (2003) Pancreatic stellate cell activation by ethanol and acetaldehyde: is it mediated by the mitogen-activated protein kinase signaling pathway? Pancreas 27(2):150–160. PMID: 12883264.

    Article  CAS  PubMed  Google Scholar 

  68. Apte MV, Xu Z, Pothula S, Goldstein D, Pirola RC, Wilson JS (2015) Pancreatic cancer: the microenvironment needs attention too! Pancreatology 15(4 Suppl):S32–S38. PMID: 25845856.

    Article  CAS  PubMed  Google Scholar 

  69. Gore J, Korc M (2014) Pancreatic cancer stroma: friend or foe? Cancer Cell 25(6):711–712. PubMed PMID: 24937454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vonlaufen A, Phillips PA, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV (2008) Pancreatic stellate cells and pancreatic cancer cells: an unholy alliance. Cancer Res 68(19):7707–7710. PMID: 18829522.

    Article  CAS  PubMed  Google Scholar 

  71. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB, Logsdon CD (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926. PMID: 18245495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Korc M (2007) Pancreatic cancer-associated stroma production. Am J Surg 194(4 Suppl):S84–S86. PMID: 17903452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV (2016) Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett 381(1):194–200. PMID: 26571462.

    Article  CAS  PubMed  Google Scholar 

  74. Gao Z, Wang X, Wu K, Zhao Y, Hu G (2010) Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis. Pancreatology 10(2–3):186–193. PMID: 20484957.

    Article  PubMed  Google Scholar 

  75. Hamada S, Masamune A, Takikawa T, Suzuki N, Kikuta K, Hirota M, Hamada H, Kobune M, Satoh K, Shimosegawa T (2012) Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun 421(2):349–354. PMID: 22510406.

    Article  CAS  PubMed  Google Scholar 

  76. Arumugam T, Brandt W, Ramachandran V, Moore TT, Wang H, May FE, Westley BR, Hwang RF, Logsdon CD (2011) Trefoil factor 1 stimulates both pancreatic cancer and stellate cells and increases metastasis. Pancreas 40(6):815–822. PMID: 21747314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ 3rd. (1999) Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59(5):987–990. PMID: 10070951.

    CAS  PubMed  Google Scholar 

  78. Koikawa K, Ohuchida K, Ando Y, Kibe S, Nakayama H, Takesue S, Endo S, Abe T, Okumura T, Iwamoto C, Moriyama T, Nakata K, Miyasaka Y, Ohtsuka T, Nagai E, Mizumoto K, Hashizume M, Nakamura M (2018) Basement membrane destruction by pancreatic stellate cells leads to local invasion in pancreatic ductal adenocarcinoma. Cancer Lett 425:65–77. PMID: 29580808.

    Article  CAS  PubMed  Google Scholar 

  79. Marzoq AJ, Mustafa SA, Heidrich L, Hoheisel JD, Alhamdani MSS (2019) Impact of the secretome of activated pancreatic stellate cells on growth and differentiation of pancreatic tumour cells. Sci Rep 9(1):5303. PMID: 30923340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S, Martin P, Tseng TW, Dawson DW, Donahue TR, Masamune A, Shimosegawa T, Apte MV, Wilson JS, Ng B, Lau SL, Gunton JE, Wahl GM, Hunter T, Drebin JA, O’Dwyer PJ, Liddle C, Tuveson DA, Downes M, Evans RM (2014) Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159(1):80–93. PMID: 25259922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA, Clevers H, Hart IR, Kocher HM (2011) Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 141(4):1486–1497, 1497.e1–14. PMID: 21704588.

    Article  CAS  PubMed  Google Scholar 

  82. Ene-Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, Marshall JF, Chin-Aleong J, Chelala C, Gribben JG, Ramsay AG, Kocher HM (2013) Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology 145(5):1121–1132. PMID: 23891972.

    Article  CAS  PubMed  Google Scholar 

  83. Gonzalez-Villasana V, Rodriguez-Aguayo C, Arumugam T, Cruz-Monserrate Z, Fuentes-Mattei E, Deng D, Hwang RF, Wang H, Ivan C, Garza RJ, Cohen E, Gao H, Armaiz-Pena GN, Del C Monroig-Bosque P, Philip B, Rashed MH, Aslan B, Erdogan MA, Gutierrez-Puente Y, Ozpolat B, Reuben JM, Sood AK, Logsdon C, Lopez-Berestein G (2014) Bisphosphonates inhibit stellate cell activity and enhance antitumor effects of nanoparticle albumin-bound paclitaxel in pancreatic ductal adenocarcinoma. Mol Cancer Ther 13(11):2583–2594. PMID: 25193509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kozono S, Ohuchida K, Eguchi D, Ikenaga N, Fujiwara K, Cui L, Mizumoto K, Tanaka M (2013) Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res 73(7):2345–2356. https://doi.org/10.1158/0008-5472.CAN-12-3180. Epub 2013 Jan 24. PubMed PMID: 23348422.

    Article  CAS  PubMed  Google Scholar 

  85. Pomianowska E, Sandnes D, Grzyb K, Schjølberg AR, Aasrum M, Tveteraas IH, Tjomsland V, Christoffersen T, Gladhaug IP (2014) Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma. BMC Cancer 14:413. PMID: 24912820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nagashio Y, Ueno H, Imamura M, Asaumi H, Watanabe S, Yamaguchi T, Taguchi M, Tashiro M, Otsuki M (2004) Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab Investig 84(12):1610–1618. PMID: 15502860.

    Article  CAS  PubMed  Google Scholar 

  87. Tasci I, Deveci S, Isik AT, Comert B, Akay C, Mas N, Inal V, Yamanel L, Mas MR (2007) Allopurinol in rat chronic pancreatitis: effects on pancreatic stellate cell activation. Pancreas 35(4):366–71. PubMed PMID: 18090245.

    Article  PubMed  Google Scholar 

  88. Fitzner B, Brock P, Holzhüter SA, Nizze H, Sparmann G, Emmrich J, Liebe S, Jaster R (2009) Synergistic growth inhibitory effects of the dual endothelin-1 receptor antagonist bosentan on pancreatic stellate and cancer cells. Dig Dis Sci 54(2):309–20. https://doi.org/10.1007/s10620-008-0366-z. Epub 2008 Jul 10. PubMed PMID: 18612819.

    Article  PubMed  CAS  Google Scholar 

  89. Gao X, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, Chao C, Hellmich MR, Ko TC (2013) BMP2 inhibits TGF-β-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol 304(9):G804–G813. PMID: 23429583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gibo J, Ito T, Kawabe K, Hisano T, Inoue M, Fujimori N, Oono T, Arita Y, Nawata H (2005) Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Investig 85(1):75–89. PMID: 15531908.

    Article  CAS  PubMed  Google Scholar 

  91. Michalski CW, Maier M, Erkan M, Sauliunaite D, Bergmann F, Pacher P, Batkai S, Giese NA, Giese T, Friess H, Kleeff J (2008) Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS One. 3(2):e1701. https://doi.org/10.1371/journal.pone.0001701. PubMed PMID: 18301776; PubMed Central PMCID: PMC2253501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Schwer CI, Mutschler M, Stoll P, Goebel U, Humar M, Hoetzel A, Schmidt R (2010) Carbon monoxide releasing molecule-2 inhibits pancreatic stellate cell proliferation by activating p38 mitogen-activated protein kinase/heme oxygenase-1 signaling. Mol Pharmacol 77(4):660–669. PMID: 20053955.

    Article  CAS  PubMed  Google Scholar 

  93. Tsang SW, Zhang HJ, Chen YG, Auyeung KK, Bian ZX (2015) Eruberin A, a natural flavanol glycoside, exerts anti-fibrotic action on pancreatic stellate cells. Cell Physiol Biochem 36(6):2433–2446. PMID: 26279445.

    Article  CAS  PubMed  Google Scholar 

  94. Asaumi H, Watanabe S, Taguchi M, Tashiro M, Nagashio Y, Nomiyama Y, Nakamura H, Otsuki M (2006) Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits ethanol-induced activation of pancreatic stellate cells. Eur J Clin Investig 36(2):113–122. PMID: 16436093.

    Article  CAS  Google Scholar 

  95. Baumert JT, Sparmann G, Emmrich J, Liebe S, Jaster R (2006) Inhibitory effects of interferons on pancreatic stellate cell activation. World J Gastroenterol 12(6):896–901. PMID: 16521217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gundewar C, Ansari D, Tang L, Wang Y, Liang G, Rosendahl AH, Saleem MA, Andersson R (2015) Antiproliferative effects of curcumin analog L49H37 in pancreatic stellate cells: a comparative study. Ann Gastroenterol 28(3):391–398. PMID: 26129848.

    PubMed  PubMed Central  Google Scholar 

  97. Long D, Lu J, Luo L, Guo Y, Li C, Wu W, Shan J, Li L, Li S, Li Y, Lin T, Feng L (2012) Effects of octreotide on activated pancreatic stellate cell-induced pancreas graft fibrosis in rats. J Surg Res 176(1):248–259. Erratum in: J Surg Res. 2013;180(2):368. PMID: 21816420.

    Article  CAS  PubMed  Google Scholar 

  98. Blauer M, Sand J, Laukkarinen J (2015) Physiological and clinically attainable concentrations of 1,25-dihydroxyvitamin D3 suppress proliferation and extracellular matrix protein expression in mouse pancreatic stellate cells. Pancreatology 15(4):366–371. PMID: 26005021.

    Article  CAS  PubMed  Google Scholar 

  99. Witteck L, Jaster R (2015) Trametinib and dactolisib but not regorafenib exert antiproliferative effects on rat pancreatic stellate cells. Hepatobiliary Pancreat Dis Int 14(6):642–650. PMID: 26663013.

    Article  PubMed  Google Scholar 

  100. Masamune A, Kikuta K, Satoh M, Satoh K, Shimosegawa T (2003) Rho kinase inhibitors block activation of pancreatic stellate cells. Br J Pharmacol 140(7):1292–1302. PMID: 14581180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, D., Radhakrishnan, P. (2020). Pancreatic Stellate Cells: The Key Orchestrator of The Pancreatic Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-37184-5_5

Download citation

Publish with us

Policies and ethics