Skip to main content

Advertisement

Log in

Synergistic Growth Inhibitory Effects of the Dual Endothelin-1 Receptor Antagonist Bosentan on Pancreatic Stellate and Cancer Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Pancreatic stellate cells (PSC) play a key role in pancreatic fibrosis. Activation of PSC occurs in response to pro-fibrogenic stimuli and is maintained by autocrine loops of mediators, such as endothelin (ET)-1. Here, we have evaluated effects of the dual ET receptor antagonist bosentan in models of pancreatic fibrogenesis and cancer. Cell culture studies revealed that PSC and DSL6A pancreatic cancer cells expressed both ET-1 and ET receptors. Bosentan efficiently inhibited proliferation of both cell types and collagen synthesis in PSC. Expression of the myofibroblastic marker α-smooth muscle actin, connective tissue growth factor, and ET-1 itself in PSC was reduced, while expression of matrix metalloproteinase-9 was enhanced. Like PSC, DSL6A cells secrete less ET-1 when cultured with bosentan. In a rat model of pancreatic fibrosis, chronic pancreatitis induced by dibutyltin dichloride, a tendency towards a diminished disease progression was observed in a subgroup of rats with less severe disease. Together, our results indicate that bosentan exerts antifibrotic and antitumor effects in vitro. Its efficiency in vivo warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Longnecker DS (1982) Pathology and pathogenesis of diseases of the pancreas. Am J Pathol 107:99–121

    PubMed  CAS  Google Scholar 

  2. Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK et al (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29:179–187. doi:10.1097/00006676-200410000-00002

    Article  PubMed  CAS  Google Scholar 

  3. Kuniyasu H, Abbruzzese JL, Cleary KR, Fidler IJ (2001) Induction of ductal and stromal hyperplasia by basic fibroblast growth factor produced by human pancreatic carcinoma. Int J Oncol 19:681–685

    PubMed  CAS  Google Scholar 

  4. Lohr M, Schmidt C, Ringel J, Kluth M, Müller P, Nizze H et al (2001) Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 61:550–555

    PubMed  CAS  Google Scholar 

  5. Bachem MG, Schunemann M, Ramadani M, Siech M, Beger H, Buck A et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128:907–921. doi:10.1053/j.gastro.2004.12.036

    Article  PubMed  CAS  Google Scholar 

  6. Witt H, Apte MV, Keim V, Wilson JS (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132:1557–1573. doi:10.1053/j.gastro.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  7. Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR et al (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10:7427–7437. doi:10.1158/1078-0432.CCR-03-0825

    Article  PubMed  CAS  Google Scholar 

  8. Qian LW, Mizumoto K, Maehara N, Ohuchida K, Inadome N, Saimura M et al (2003) Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett 190:105–112. doi:10.1016/S0304-3835(02)00517-7

    Article  PubMed  CAS  Google Scholar 

  9. Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222. doi:10.1158/0008-5472.CAN-03-2464

    Article  PubMed  CAS  Google Scholar 

  10. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S (2004) Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 28:38–44. doi:10.1097/00006676-200401000-00006

    Article  PubMed  CAS  Google Scholar 

  11. Köninger J, Giese NA, di Mola FF, Berberat P, Giese T, Esposito I et al (2004) Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action. Clin Cancer Res 10:4776–4783. doi:10.1158/1078-0432.CCR-1190-03

    Article  PubMed  Google Scholar 

  12. Müerköster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML et al (2004) Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res 64:1331–1337. doi:10.1158/0008-5472.CAN-03-1860

    Article  PubMed  Google Scholar 

  13. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA et al (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–133

    Article  PubMed  CAS  Google Scholar 

  14. Bachem MG, Schneider E, Groß H, Weidenbach H, Schmid RM, Menke A et al (1998) Identification, culture, and characterisation of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432. doi:10.1016/S0016-5085(98)70209-4

    Article  PubMed  CAS  Google Scholar 

  15. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA et al (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44:534–541

    Article  PubMed  CAS  Google Scholar 

  16. Apte MV, Phillips PA, Fahmy RG, Darby SJ, Rodgers SC, McCaughan GW et al (2000) Does alcohol directly stimulate pancreatic fibrogenesis? Gastroenterology 118:780–794. doi:10.1016/S0016-5085(00)70148-X

    Article  PubMed  CAS  Google Scholar 

  17. Luttenberger T, Schmid-Kotsas A, Menke A, Siech M, Beger H, Adler G et al (2000) Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis. Lab Invest 80:47–55

    Article  PubMed  CAS  Google Scholar 

  18. Kruse ML, Hildebrand PB, Timke C, Fölsch UR, Schmidt WE (2000) TGFβ1 autocrine growth control in isolated pancreatic fibroblastoid cells/stellate cells in vitro. Regul Pept 90:47–52. doi:10.1016/S0167-0115(00)00104-X

    Article  PubMed  CAS  Google Scholar 

  19. Klonowski-Stumpe H, Reinehr R, Fischer R, Warskulat U, Luthen R, Haussinger D (2003) Production and effects of endothelin-1 in rat pancreatic stellate cells. Pancreas 27:67–74. doi:10.1097/00006676-200307000-00010

    Article  PubMed  CAS  Google Scholar 

  20. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T (2005) Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells. World J Gastroenterol 11:6144–6151

    PubMed  CAS  Google Scholar 

  21. Jaster R, Lichte P, Fitzner B, Brock P, Glass Ä, Karopka T et al (2005) Peroxisome proliferator-activated receptor γ overexpression inhibits pro-fibrogenic activities of immortalized rat pancreatic stellate cells. J Cell Mol Med 3:670–682. doi:10.1111/j.1582-4934.2005.tb00497.x

    Article  Google Scholar 

  22. Clozel M, Salloukh H (2005) Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Ann Med 37:2–12. doi:10.1080/07853890410018925

    Article  PubMed  CAS  Google Scholar 

  23. Oikawa T, Kushuhara M, Ishikawa S, Hitomi J, Kono A, Iwanaga T et al (1994) Production of endothelin-1 and thrombomodulin by human pancreatic cancer cells. Br J Cancer 69:1059–1064

    PubMed  CAS  Google Scholar 

  24. Bhargava S, Stummeyer T, Hotz B, Hines OJ, Reber HA, Buhr HJ et al (2005) Selective inhibition of endothelin receptor A as an anti-angiogenic and anti-proliferative strategy for human pancreatic cancer. J Gastrointest Surg 9:703–709. doi:10.1016/j.gassur.2004.11.007

    Article  PubMed  Google Scholar 

  25. Rubin LJ, Roux S (2002) Bosentan: a dual endothelin receptor antagonist. Expert Opin Investig Drugs 11:991–1002. doi:10.1517/13543784.11.7.991

    Article  PubMed  CAS  Google Scholar 

  26. Sparmann G, Merkord J, Jäschke A, Nizze H, Jonas L, Lohr M et al (1997) Pancreatic fibrosis in experimental pancreatitis induced by dibutyltin dichloride. Gastroenterology 112:1664–1672. doi:10.1016/S0016-5085(97)70049-0

    Article  PubMed  CAS  Google Scholar 

  27. Jaster R, Sparmann G, Emmrich J, Liebe S (2002) Extracellular signal-regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut 51:579–584. doi:10.1136/gut.51.4.579

    Article  PubMed  CAS  Google Scholar 

  28. Jaster R, Hilgendorf I, Fitzner B, Brock P, Sparmann G, Emmrich J et al (2003) Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-trans retinoic acid. Biochem Pharmacol 66:633–641. doi:10.1016/S0006-2952(03)00390-3

    Article  PubMed  CAS  Google Scholar 

  29. Fitzner B, Walzel H, Sparmann G, Emmrich J, Liebe S, Jaster R (2005) Galectin-1 is an inductor of pancreatic stellate cell activation. Cell Signal 17:1240–1247. doi:10.1016/j.cellsig.2004.12.012

    Article  PubMed  CAS  Google Scholar 

  30. Brock P, Sparmann G, Ritter T, Jaster R, Liebe S, Emmrich J (2005) Interleukin-4 gene transfer into rat pancreas by recombinant adenovirus. Scand J Gastroenterol 40:1109–1117. doi:10.1080/00365520510023404

    Article  PubMed  CAS  Google Scholar 

  31. Merkord J, Jonas L, Weber H, Kroning G, Nizze H, Hennighausen G (1997) Acute interstitial pancreatitis in rats induced by dibutyltin dichloride (DBTC): pathogenesis and natural course of lesions. Pancreas 15:392–401. doi:10.1097/00006676-199711000-00010

    Article  PubMed  CAS  Google Scholar 

  32. Merkord J, Weber H, Sparmann G, Jonas L, Hennighausen G (1999) The course of pancreatic fibrosis induced by dibutyltin dichloride (DBTC). Ann N Y Acad Sci 880:231–237. doi:10.1111/j.1749-6632.1999.tb09527.x

    Article  PubMed  CAS  Google Scholar 

  33. Park SH, Saleh D, Giaid A, Michel RP (1997) Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med 156:600–608

    PubMed  CAS  Google Scholar 

  34. Cho JJ, Hocher B, Herbst H, Jia JD, Ruehl M, Hahn EG et al (2000) An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology 118:1169–1178. doi:10.1016/S0016-5085(00)70370-2

    Article  PubMed  CAS  Google Scholar 

  35. Hocher B, Schwarz A, Fagan KA, Thöne-Reineke C, El-Hag K, Kusserow H et al (2000) Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice. Am J Respir Cell Mol Biol 23:19–26

    PubMed  CAS  Google Scholar 

  36. Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301. doi:10.1007/s004670000461

    Article  PubMed  CAS  Google Scholar 

  37. Ramires FJ, Nunes VL, Fernandes F, Mady C, Ramires JA (2003) Endothelins and myocardial fibrosis. J Card Fail 9:232–237. doi:10.1054/jcaf.2003.26

    Article  PubMed  CAS  Google Scholar 

  38. Gressner AM, Bachem MG (1995) Molecular mechanisms of liver fibrogenesis—a homage to the role of activated fat-storing cells. Digestion 56:335–346

    Article  PubMed  CAS  Google Scholar 

  39. Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DH et al (1999) Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 155:1087–1095

    PubMed  CAS  Google Scholar 

  40. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827. doi:10.1096/fj.03-1273rev

    Article  PubMed  CAS  Google Scholar 

  41. Sihvola RK, Pulkkinen VP, Koskinen PK, Lemström KB (2002) Crosstalk of endothelin-1 and platelet-derived growth factor in cardiac allograft arteriosclerosis. J Am Coll Cardiol 39:710–717. doi:10.1016/S0735-1097(01)01782-X

    Article  PubMed  CAS  Google Scholar 

  42. Hafizi S, Allen SP, Goodwin AT, Chester AH, Yacoub MH (1999) Endothelin-1 stimulates proliferation of human coronary smooth muscle cells via the ET(A) receptor and is co-mitogenic with growth factors. Atherosclerosis 146:351–359. doi:10.1016/S0021-9150(99)00178-1

    Article  PubMed  CAS  Google Scholar 

  43. Kunichika N, Landsberg JW, Yu Y, Kunichika H, Thistlethwaite PA, Rubin LJ et al (2004) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170:1101–1107. doi:10.1164/rccm.200312-1668OC

    Article  PubMed  Google Scholar 

  44. Fiedler F, Ayasse D, Rohmeiss P, Gretz N, Rehbein C, Keim V (1999) The endothelin antagonist bosentan does not improve survival in severe experimental pancreatitis in rats. Int J Pancreatol 26:147–154. doi:10.1385/IJGC:26:3:147

    Article  PubMed  CAS  Google Scholar 

  45. Mulder P, Richard V, Derumeaux G, Hogie M, Henry JP, Lallemand F et al (1997) Role of endogenous endothelin in chronic heart failure: effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation 96:1976–1982

    PubMed  CAS  Google Scholar 

  46. Boffa JJ, Tharaux PL, Dussaule JC, Chatziantoniou C (2001) Regression of renal vascular fibrosis by endothelin receptor antagonism. Hypertension 37:490–496

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the excellent technical assistance of Mrs. Katja Bergmann, Mrs. Helga Schulze, and Mrs. Katrin Sievert-Küchenmeister. The in vitro studies with PSC and the in vivo studies with DBTC-treated rats were supported by a grant from the Deutsche Forschungsgemeinschaft. Investigations regarding bosentan effects in pancreatic cancer cells were funded by Actelion.

Competing Interests

The following relationship could be construed as resulting in an actual, potential, or apparent conflict of interest with regard to the manuscript: The laboratory of R. Jaster has received research support from Actelion for the studies with DSL6A pancreatic cancer cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Jaster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzner, B., Brock, P., Holzhüter, SA. et al. Synergistic Growth Inhibitory Effects of the Dual Endothelin-1 Receptor Antagonist Bosentan on Pancreatic Stellate and Cancer Cells. Dig Dis Sci 54, 309–320 (2009). https://doi.org/10.1007/s10620-008-0366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0366-z

Keywords

Navigation