Skip to main content

Turbulent Length Scales and Reynolds Stress Anisotropy in Wall-Wake Flow Downstream of an Isolated Dunal Bedform

  • Conference paper
  • First Online:
Recent Trends in Environmental Hydraulics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

This experimental study brings the turbulent length scales and the Reynolds stress anisotropy into focus in wall-wake flow downstream of an isolated dunal bedform. The results reveal that wall-wake flow downstream of an isolated dune possesses a high-turbulence level having its peak value at the dune crest level. This level lasts up to the vertical distance until the effects of the dune on the flow disappears. Regarding the turbulent length scales, downstream of the dune, the Prandtl’s mixing length in wall-wake flow is greater than that in undisturbed upstream flow, while the Taylor microscale and the Kolmogorov length scale are smaller. In Reynolds stress anisotropy analysis, the anisotropy invariant maps demonstrate the data plots form a looping trend in wall-wake flow. Below the dune crest, the turbulence is characterized with an affinity to show a two-dimensional isotropy, while above the crest, the anisotropy has a tendency to reduce to a quasi-three-dimensional isotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akilli H, Rockwell D (2002) Vortex formation from a cylinder in shallow water. Phys Fluids 14(9):2957–2967

    Article  ADS  MATH  Google Scholar 

  • Balachandar R, Ramachandran S, Tachie MF (2000) Characteristics of shallow turbulent near wakes at low Reynolds numbers. J Fluids Eng 122(2):302–308

    Article  Google Scholar 

  • Basse NT (2017) Turbulence intensity and the friction factor for smooth- and rough-wall pipe flow. Fluids 2(30):1–13

    ADS  Google Scholar 

  • Best JL (2005) The kinematics, topology and significance of dune-related macroturbulence: some observations from the laboratory and field. In: Blum MD, Marriott SB, Leclair S (eds) Fluvial sedimentology VII. Special Publication of International Association of Sedimentologists, vol 35, pp 41–60

    Google Scholar 

  • Bose SK, Dey S (2016) Circular far-wake flow behind a sphere: solutions to the second-order. J Eng Mech 142(1):06015005

    Article  Google Scholar 

  • Bose SK, Dey S (2018) Far-wake flows downstream of cylinders: a novel generalized similarity method. Eur J Mech/B Fluids 67(January-February):65–69

    Article  MathSciNet  MATH  Google Scholar 

  • Dey S (2014) Fluvial hydrodynamics: hydrodynamic and sediment transport phenomena. Geoplanet Book Series. Springer, Berlin

    Book  Google Scholar 

  • Dey S, Das R (2012) Gravel-bed hydrodynamics: a double-averaging approach. J Hydraul Eng 138(8):707–725

    Article  Google Scholar 

  • Dey S, Sarkar S, Bose SK, Tait S, Castro-Orgaz O (2011) Wall-wake flows downstream of a sphere placed on a plane rough wall. J Hydraul Eng 137(10):1173–1189

    Article  Google Scholar 

  • Dey S, Lodh R, Sarkar S (2018a) Turbulence characteristics in wall-wake flows downstream of wall-mounted and near-wall horizontal cylinders. Environ Fluid Mech 18(4):891–921

    Article  Google Scholar 

  • Dey S, Swargiary D, Sarkar S, Fang H, Gaudio R (2018b) Turbulence features in a wall-wake flow downstream of a wall-mounted vertical cylinder. Eur J Mech-B/Fluids 69(May-June):46–61

    Article  Google Scholar 

  • Dey S, Swargiary D, Sarkar S, Fang H, Gaudio R (2018c) Self-similarity in turbulent wall-wake flow downstream of a wall-mounted vertical cylinder. J Hydraul Eng 144(6):04018023

    Article  Google Scholar 

  • Dey S, Ravi Kishore G, Castro-Orgaz O, Ali SZ (2019) Turbulence length scales and anisotropy in submerged plane offset jets. J Hydraul Eng 145(2):04018085

    Article  Google Scholar 

  • Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126

    Article  Google Scholar 

  • Jovanović J (2004) The statistical dynamics of turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kahraman A, Sahin B, Rockwell D (2002) Control of vortex formation from a vertical cylinder in shallow water: effect of localized roughness elements. Exp Fluids 33(1):54–65

    Article  Google Scholar 

  • Keirsbulck L, Labraga L, Mazouz A, Tournier C (2002) Influence of surface roughness on anisotropy in a turbulent boundary layer flow. Exp Fluids 33(3):497–499

    Article  Google Scholar 

  • Lacey RWJ, Roy AG (2008) Fine-scale characterization of the turbulent shear layer of an instream pebble cluster. J Hydraul Eng 134(7):925–936

    Article  Google Scholar 

  • Lumley JL, Newman GR (1977) The return to isotropy of homogeneous turbulence. J Fluid Mech 82:161–178

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maddux TB, Nelson JM, McLean SR (2003a) Turbulent flow over three-dimensional dunes: I. free surface and flow response. J Geophys Res 108(F1):6009

    Google Scholar 

  • Maddux TB, Nelson JM, McLean SR (2003b) Turbulent flow over three-dimensional dunes: II. Fluid and bed stresses. J Geophys Res 108(F1):6010

    Google Scholar 

  • McLean SR, Smith JD (1986) A model for flow over two-dimensional bed forms. J Hydraul Eng 112(4):300–317

    Article  Google Scholar 

  • Nelson JM, Smith JD (1989) Mechanics of flow over ripples and dunes. J Geophys Res 94(C6):8146–8162

    Article  ADS  Google Scholar 

  • Ozgoren M (2006) Flow structure in the downstream of square and circular cylinders. Flow Meas Instrum 17(4):225–235

    Article  Google Scholar 

  • Ozturk NA, Akkoca A, Sahin B (2008) Flow details of a circular cylinder mounted on a flat plate. J Hydraul Res 46(3):344–355

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Prandtl L (1925) Bericht ĂĽber untersuchungen zur ausgebildeten turbulenz. Z Angew Math Mech 5(2):136–139

    Article  MATH  Google Scholar 

  • Reynolds WC, Kassinos SC (1995) One-point modelling of rapidly deformed homogeneous turbulence. Proc R Soc Lond A 451(1941):87–104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rotta JC (1951) Statistische theorie nichthomogener turbulenz. Z Phys 129(6):547–572

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Russo F, Basse NT (2016) Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Meas Instrum 52:101–114

    Article  Google Scholar 

  • Sadeque MAF, Rajaratnam N, Loewen MR (2009) Shallow turbulent wakes behind bed-mounted cylinders in open channels. J Hydraul Res 47(6):727–743

    Article  Google Scholar 

  • Sarkar S, Dey S (2015a) Turbulent length scales and anisotropy downstream of a wall mounted sphere. J Hydraul Res 53(5):649–658

    Article  Google Scholar 

  • Sarkar S, Dey S (2015b) Turbulence anisotropy in flow at an entrainment threshold of sediment. J Hydraul Eng 141(7):06015007

    Article  Google Scholar 

  • Sarkar S, Papanicolaou AN, Dey S (2016) Turbulence in a gravel-bed stream with an array of large gravel obstacles. J Hydraul Eng 142(11):04016052

    Article  Google Scholar 

  • Schlichting H (1979) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Sforza PM, Mons RF (1970) Wall-wake: flow behind a leading edge obstacle. AIAA J 8(2):2162–2167

    Article  ADS  Google Scholar 

  • Shamloo H, Rajaratnam N, Katopodis C (2001) Hydraulics of simple habitat structures. J Hydraul Res 39(4):351–366

    Article  Google Scholar 

  • Simonsen AJ, Krogstad PĂ… (2005) Turbulent stress invariant analysis: clarification of existing terminology. Phys Fluids 17(8):088103

    Article  ADS  MATH  Google Scholar 

  • Smalley RJ, Leonardi S, Antonia RA, Djenidi L, Orlandi P (2002) Reynolds stress anisotropy of turbulent rough wall layers. Exp Fluids 33(1):31–37

    Article  Google Scholar 

  • Tachie MF, Balachandar R (2001) Shallow wakes generated on smooth and rough surfaces. Exp Fluids 30(4):467–474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, S., Sarkar, S. (2020). Turbulent Length Scales and Reynolds Stress Anisotropy in Wall-Wake Flow Downstream of an Isolated Dunal Bedform. In: Kalinowska, M., Mrokowska, M., Rowiński, P. (eds) Recent Trends in Environmental Hydraulics. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-37105-0_1

Download citation

Publish with us

Policies and ethics