Skip to main content

Recycling of Blast Furnace Flue Dust with In-flight Reduction Technology: Reduction Behavior and Kinetic Analysis

  • Conference paper
  • First Online:
Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1547 Accesses

Abstract

Blast furnace (BF) flue dust is a by-product and collected from the gas cleaning systems during the blast furnace ironmaking process, which can be recycled as one of the secondary sources due to the valuable contents of iron and carbon. A novel in-flight reduction technology is considered to allow utilizing the large quantities of fine iron-bearing metallurgical dust directly to bypass the sintering/pelletization and conventional coke-making steps. In this work, the reduction behavior and kinetic mechanism of the blast furnace dust during in-flight process in hydrogen atmosphere are studied with lab-scale high-temperature drop tube furnace. The effects of temperature and gas composition on the reduction degree are examined. With the morphological observation, it is found that the unreacted shrinking core model can describe the in-flight reduction process . According to the kinetic analysis, the rate-controlling step is determined as the chemical reaction at the particle surface. The activation energy Ea is determined to be 224.8 kJ/mol and the pre-exponent factor A as 7.2 × 106 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu G (2015) Applied basic research on recycling of blast furnace dust. Ph.D. thesis, University of Science and Technology, Beijing

    Google Scholar 

  2. Deng YC, Jia SQ, Wu SL, Jiang YJ (2015) Removal of the harmful elements and iron recovery from the blast furnace gas ash by chloridizing roasting. Iron Steel Vanadium Titanium 36:51–56

    CAS  Google Scholar 

  3. Lanzerstorfer C, Kroppl M (2014) Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process. Resour Conserv Recycl 86:132–137

    Article  Google Scholar 

  4. Zhao D, Zhang JL, Wang GW, Conejo AN, Xu RS, Wang HY, Zhong JB (2016) Structure characteristics and combustibility of carbonaceous materials from blast furnace flue dust. Appl Therm Eng 108:1168–1177

    Article  CAS  Google Scholar 

  5. Leimalm U, Lundgren M, Okvist LS (2010) Off-gas dust in an experimental blast furnace part 1: characterization of flue dust, sludge and shift fines. ISIJ Int 50(11):1560–1569

    Article  CAS  Google Scholar 

  6. Stecko J, Stachura R, Nieslar M, Bernasowski M, Klimczyk A (2018) Utilisation of metallurgical sludge by multi-layer sintering. Ironmaking Steelmak 45(9):779–786

    Article  CAS  Google Scholar 

  7. Lanzerstorfer C, Bamberger-strassmayr B, Pilz K (2015) Recycling of blast furnace dust in the iron ore sintering process: investigation of coke breeze substitution and the influence on off-gas emissions. ISIJ Int 55(4):758–764

    Article  CAS  Google Scholar 

  8. Hu T, Lv XW, Bai CG (2016) Enhanced reduction of coal-containing titanomagnetite concentrates briquette with multiple layers in rotary hearth furnace. Steel Res Int 87(4):494–500

    Article  CAS  Google Scholar 

  9. Chung SH, Kim KH, Shon II (2015) DRI from recycled iron bearing wastes for lower carbon in the blast furnace. ISIJ Int 55(6):1157–1164

    Article  CAS  Google Scholar 

  10. Wang HT, Sohn HY (2012) Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B 44(B):133–145

    CAS  Google Scholar 

  11. Chen F, Mohassab Y, Zhang SQ, Sohn HY (2015) Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash inromaking process. Metall Mater Trans B 46(B):1716–1728

    Article  CAS  Google Scholar 

  12. Qu Y, Yang Y, Zou Z, Zeilstra C, Meijer K, Boom R (2015) Reduction kinetics of fine hematite ore particles with a high temperature drop tube furnace. ISIJ Int 55(B):952–960

    Article  CAS  Google Scholar 

  13. Qu Y, Yang Y, Zou Z, Zeilstra C, Meijer K, Boom R (2015) Melting and reduction behavior of fine hematite ore particles. ISIJ Int 55(1):149–157

    Article  CAS  Google Scholar 

  14. Takeuchi N, Nomura Y, Ohno K, Maeda T, Nishioka K, Shimizu M (2007) Kinetic analysis of spherical wustite reduction transported with CH4 gas. ISIJ Int 47(3):386–391

    Article  CAS  Google Scholar 

  15. Srinivasan NS, Lahiri AK (1977) Studies on the reduction of hematite by carbon. Metall Mater Trans B 8(b):175–178

    Article  Google Scholar 

  16. Tiwari P, Bandyopadhyay D, Ghosh A (1992) Kinetics of gasification of carbon and carbothermic reduction of iron oxide. Ironmaking Steelmak 19:464–468

    CAS  Google Scholar 

  17. Piotrowski K, Mondal K, Wiltowski T, Dydo P, Rizeg G (2007) Topochemical approach of kinetics of the reduction of hematite to wustite. Chem Eng J 131(1–3):73–82

    Article  CAS  Google Scholar 

  18. Li B, Wang H, Wei YG (2012) Kinetic analysis for non-isothermal solid state reduction of nickel laterite ore by carbon monoxide. Trans Inst Min Metall C 121(C):178–184

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51574065, 51574066, 51774072, 51774073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Wang, N., Chen, M., Yu, H. (2020). Recycling of Blast Furnace Flue Dust with In-flight Reduction Technology: Reduction Behavior and Kinetic Analysis. In: Chen, X., et al. Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36830-2_35

Download citation

Publish with us

Policies and ethics