Skip to main content

CCL21 Programs Immune Activity in Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1231))

Abstract

CCL21 promotes immune activity in the tumor microenvironment (TME) by colocalizing dendritic cells (DC) and T cells programing ectopic lymph node architectural structures that correlate with cancer prognosis. Innovative strategies to deliver CCL21 in cancer patients will reactivate the downregulated immune activity in the TME. Immune escape mechanisms are upregulated in the TME that promote tumor immune evasion. CCL21 combined with inhibition of dominant pathways of immune evasion will aid in the development of effective immunotherapy for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JM, Lee MH, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE et al (2017) Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8(+) T-cell infiltration. Clin Cancer Res 23(16):4556–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

  3. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    CAS  PubMed  Google Scholar 

  4. Johnson SK, Kerr KM, Chapman AD, Kennedy MM, King G, Cockburn JS et al (2000) Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer 27:27–35

    Article  CAS  PubMed  Google Scholar 

  5. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y et al (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417

    Article  CAS  PubMed  Google Scholar 

  7. Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al (2000) Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164:4558–4563

    Article  CAS  PubMed  Google Scholar 

  8. Sharma S, Stolina M, Zhu L, Lin Y, Batra R, Huang M et al (2001) Secondary lymphoid organ chemokine reduces pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 61:6406–6412

    CAS  PubMed  Google Scholar 

  9. Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M et al (2004) Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 10:2891–2901

    Article  CAS  PubMed  Google Scholar 

  10. Yang SC, Batra RK, Hillinger S, Reckamp KL, Strieter RM, Dubinett SM et al (2006) Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 66:3205–3213

    Article  CAS  PubMed  Google Scholar 

  11. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD (1998) Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 95:258–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friedman RS, Jacobelli J, Krummel MF (2006) Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 7:1101–1108. Epub 2006 Sept 10

    Article  CAS  PubMed  Google Scholar 

  13. Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL (2004) The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell Immunol 231:75–84. Epub 2005 Jan 21

    Article  CAS  PubMed  Google Scholar 

  14. Sharma S, Miller P, Stolina M, Zhu L, Huang M, Paul R et al (1997) Multi-component gene therapy vaccines for lung cancer: effective eradication of established murine tumors in vivo with Interleukin 7/Herpes Simplex Thymidine Kinase-transduced autologous tumor and ex vivo-activated dendritic cells. Gene Therapy 4:1361–1370

    Article  CAS  PubMed  Google Scholar 

  15. Miller PW, Sharma S, Stolina M, Butterfield LH, Luo J, Lin Y et al (2000) Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 11:53–65

    Article  CAS  PubMed  Google Scholar 

  16. Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    CAS  PubMed  Google Scholar 

  17. Kirk CJ, Hartigan-O’Connor D, Mule JJ (2001) The dynamics of the T-cell antitumor response: chemokine-secreting dendritic cells can prime tumor-reactive T cells extranodally. Cancer Res 61:8794–8802

    CAS  PubMed  Google Scholar 

  18. Novak L, Igoucheva O, Cho S, Alexeev V (2007) Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Mol Cancer Ther 6:1755–1764

    Article  CAS  PubMed  Google Scholar 

  19. Liang CM, Zhong CP, Sun RX, Liu BB, Huang C, Qin J et al (2007) Local expression of secondary lymphoid tissue chemokine delivered by adeno-associated virus within the tumor bed stimulates strong anti-liver tumor immunity. J Virol 81:9502–9511. Epub 2007 Jun 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu S, Xing W, Peng J, Yuan X, Zhao X, Lei P et al (2008) Tumor transfected with CCL21 enhanced reactivity and apoptosis resistance of human monocyte-derived dendritic cells. Immunobiology 213:417–426. Epub 2007 Nov 28

    Article  CAS  PubMed  Google Scholar 

  21. Yousefieh N, Hahto SM, Stephens AL, Ciavarra RP (2009) Regulated expression of CCL21 in the prostate tumor microenvironment inhibits tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer Microenviron 2(1):59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283

    Article  CAS  Google Scholar 

  23. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    CAS  PubMed  Google Scholar 

  24. Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic NL et al (2003) Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63:6378–6386

    CAS  PubMed  Google Scholar 

  25. Lapteva N, Aldrich M, Rollins L, Ren W, Goltsova T, Chen SY et al (2009) Attraction and activation of dendritic cells at the site of tumor elicits potent antitumor immunity. Mol Ther 17:1626–1636. Epub 2009 Jun 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coppola D, Mule JJ (2008) Ectopic lymph nodes within human solid tumors. J Clin Oncol 26:4369–4370

    Article  PubMed  Google Scholar 

  27. Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, Chamberlain JS, Giedlin M, Aukerman L et al (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61:2062–2070

    CAS  PubMed  Google Scholar 

  28. Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhard VH (2015) Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nature Commun 6:7114

    Article  CAS  Google Scholar 

  29. Baratelli F, Takedatsu H, Hazra S, Peebles K, Luo J, Kurimoto PS et al (2008) Pre-clinical characterization of GMP grade CCL21-gene modified dendritic cells for application in a phase I trial in non-small cell lung cancer. J Transl Med 6:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li WA, Mooney DJ (2013) Materials based tumor immunotherapy vaccines. Curr Opin Immunol 25:238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu D, Lau OD, Wang L, Wang G, Schaue D, Zhu L et al (2012) A novel modular polymer platform for the treatment of head and neck squamous cell carcinoma in an animal model. Arch Otolaryngol Head Neck Surg 138:412–417

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin Y, Luo J, Zhu WE, Srivastava M, Schaue D, Elashoff DA et al (2014) A cytokine-delivering polymer is effective in reducing tumor burden in a head and neck squamous cell carcinoma murine model. Otolaryngol Head Neck Surg 151:447–453

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ross DA, Hundal JS, Son YH, Ariyan S, Shin J, Lowlicht R et al (2004) Microsurgical free flap reconstruction outcomes in head and neck cancer patients after surgical extirpation and intraoperative brachytherapy. Laryngoscope 114:1170–1176

    Article  PubMed  Google Scholar 

  35. Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ (2009) Infection-mimicking materials to program dendritic cells in situ. Nat Mater 8:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kar UK, Srivastava MK, Andersson A, Baratelli F, Huang M, Kickhoefer VA et al (2011) Novel CCL21-vault nanocapsule intratumoral delivery inhibits lung cancer growth. PLoS One 6:e18758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA et al (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA et al (2015) Overall survival and long-term safety of nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 33(18):2004–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soria JC, Marabelle A, Brahmer JR, Gettinger S (2015) Immune checkpoint modulation for non-small cell lung cancer. Clin Cancer Res 21:2256–2262

    Article  CAS  PubMed  Google Scholar 

  42. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028

    Article  PubMed  Google Scholar 

  43. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delamarre L, Mellman I, Yadav M (2015) Cancer immunotherapy. Neo approaches to cancer vaccines. Science 348:760–761

    Article  CAS  PubMed  Google Scholar 

  45. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M et al (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 94:107–116

    Article  CAS  PubMed  Google Scholar 

  46. Salehi-Rad R, Walser T, So S, Park S, Sharma L, Jay SD (2017) CCL21 combined with PD-1 blockade cooperatively inhibits tumor growth in KRAS murine model of NSCLC. J Thorac Oncol 12:S1537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherven Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Kadam, P., Dubinett, S. (2020). CCL21 Programs Immune Activity in Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1231. Springer, Cham. https://doi.org/10.1007/978-3-030-36667-4_7

Download citation

Publish with us

Policies and ethics