Skip to main content

Biofertilizers Toward Sustainable Agricultural Development

  • Chapter
  • First Online:
Plant Microbe Symbiosis

Abstract

Modern intensive farming technologies enhance crop production but over time are associated with more problems, causing environment pollution that is hazardous to human health, and, ultimately poor production of crops and the threat to food security of the growing world population. Therefore, sustainable agricultural production is the major challenge to encounter the huge demand of food grain production by the emerging population in an environmentally safe and cost-effective manner. Biofertilizers are one of the key sources in sustainable agriculture production and organic farming to meet consumer preferences and quality crop production. Biofertilizers are live microorganisms that enhance the supply of adequate nutrients to the crop plants through nitrogen fixation, phosphorus and potassium solubilization, and production of plant growth hormones, ensuring optimum growth and development of crops, and ultimately facilitate higher crop production and productivity. Biofertilizers, being essential components of sustainable farming, are vital in maintaining long-term soil fertility and the sustainability of crop production. The modern agricultural production system needs the widespread use of biofertilizers and potent sources for inclusive and sustainable development of agriculture without damaging the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 1:1–12

    Article  CAS  Google Scholar 

  • Adeyeye AS, Togun AO, Olaniyan AB, Akanbi WB (2017) Effect of fertilizer and Rhizobium inoculation on growth and yield of soya bean variety (Glycine max L. Merrill). Adv Crop Sci Tech 5:255

    Google Scholar 

  • Alloway BJ (2004) Zinc in soil and crop nutrition. International Zinc Association, Belgium

    Google Scholar 

  • Amalraj EDL, Maiyappan S, John Peter A (2012) In vivo and in vitro studies of Bacillus megaterium var. phosphaticum on nutrient mobilization, antagonism and plant growth promoting traits. J Ecobiotechnol 1:35–42

    Google Scholar 

  • Archana D, Nandish M, Savalagi V, Alagawadi A (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet Q J Life Sci 10:248–257

    Google Scholar 

  • Bashan Y, de-Bashan L (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdeni D, Cotton TEA, Daniell TJ, Bidartondo MI, Cameron DD, Evans KL (2018) The effects of arbuscular mycorrhizal fungal colonisation on nutrient status, growth, productivity, and canker resistance of apple (Malus pumila). Front Microbiol 9:1461

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chun-Li W, Shiuan-Yuh C, Chiu-Chung Y (2014) Present situation and future perspective of bio-fertilizer for environmentally friendly agriculture. Annu Rep 2014:1–5

    Google Scholar 

  • Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

    CAS  Google Scholar 

  • Deepak J, Geeta N, Sachin V, Anita S (2013) Enhancement of wheat growth and Zn content in grains by zinc solubilizing bacteria. Int J Agric Environ Biotechnol 6:363–370

    Article  Google Scholar 

  • Diriba M, Fassil A, Elisabet B, Granhall UF (2013) Phosphate solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. J Saudi Soc Agric Sci 12:73–84

    Google Scholar 

  • Dudeja SS, Khurana AL, Kundu BS (1981) Effect of rhizobium and phosphorus- micro-organisms on yield and nutrient uptake in chickpea. Curr Sci 50:503–505

    CAS  Google Scholar 

  • Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron 2014:1–13. https://doi.org/10.1155/2014/208383

  • Ewa K, Ewa O, Piotr S, Anna S, Jolanta JS (2013) Effect of Pseudomonas luteola on mobilization of phosphorus and growth of young apple trees (Ligol): pot experiment. Sci Hortic 164:270–276

    Article  CAS  Google Scholar 

  • Ghorbanian D, Harutyunyan S, Mazaheri D, Rasoli V, MohebI A (2012) Influence of arbuscular mycorrhizal fungi and different levels of phosphorus on the growth of corn in water stress conditions. Afr J Agric Res 7(16):2575–2580

    Article  Google Scholar 

  • Giri B, Prasad R, Wu Q-S, Varma A (2019) Biofertilizers for sustainable agriculture and environment. Springer, Cham. ISBN 978-3-030-18932-7. https://www.springer.com/gp/book/9783030189327

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gothandapani S, Soundarapandian S, Jasdeep CP (2017) Azotobacter chroococcum: utilization and potential use for agricultural crop production: an overview. Int J Adv Res Biol Sci 4:35–42

    Article  CAS  Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, HafidI M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  • Intorne AC, Oliveira MVV, Lima ML, Silva DJF, Olivares FL, De Souza FA (2009) Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch Microbiol 191(5):477–483

    Article  CAS  PubMed  Google Scholar 

  • Iqbal U, Wali VK, Kher R, Jamawal M (2009) Effect of FYM, urea and Azotobacter on growth, yield and quality of strawberry cv. Chandler. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(1):139–143

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterrraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jehangir IA, Mir MA, Bhat MA, Ahangar MA (2017) Biofertilizers an approach to sustainability in agriculture: a review. Int J Pure Appl Biosci 5:327–334

    Article  Google Scholar 

  • Jeyabal A, Kupuswamy G (2001) Recycling of organic wastes for the production of vermicompost and its response in rice legume cropping system and soil fertility. Eur J Agron 15:153–170

    Article  CAS  Google Scholar 

  • Jimenez DJ, Jose SM, Maria MM (2011) Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils. Braz J Microbiol 42(3):846–858

    Article  CAS  Google Scholar 

  • Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz J Microbiol 41:787–795

    Article  CAS  Google Scholar 

  • Khaitov B, Kurbonov A, Abdiev A, Adilov M (2016) Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eur J Soil Sci 5(2):105–112

    Google Scholar 

  • Knobeloch L, Salna B, Hogan A, Postle J, Anderson H (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108:675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucey RMN, Paul FA (1982) Carbon flux, photosynthesis and nitrogen fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14:407–412

    Article  Google Scholar 

  • Lach D, Sharma VK, Vary PS (1990) Isolation and characterization of a unique division mutant of Bacillus megaterium. J Gen Microbiol 3:545–553

    Article  Google Scholar 

  • Logeshwarn P, Thangaraju M, Rajasundari K (2011) Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus). Arch Phytopathol Plant Protect 44:216–223

    Article  CAS  Google Scholar 

  • Mahdi SS, Talat MA, Hussain Dar M, Hamid A, Ahmad L (2012) Soil phosphorus fixation chemistry and role of phosphate solubilizing bacteria in enhancing its efficiency for sustainable cropping: a review. J Pure Appl Microbiol 6(4):1–7

    Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial micro-organisms inoculation used as biofertilizers. Sci World J 2012:491206. https://doi.org/10.1100/2012/491206

    Article  CAS  Google Scholar 

  • Martyniuk S, Martyniuk M (2003) Occurrence of Azotobacter Spp. in some polish soils. J Environ Stud 12:371–374

    CAS  Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23

    Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Potential of NO and H2O2 as signaling molecules in tolerance to abiotic stress in plants. J Ind Res Technol 1:56–68

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Ajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. J Sustain Dev 11:41–61

    Google Scholar 

  • Mishra DJ, Rajivir S, Mishrra UK, Kumar SS (2013) Role of biofertilizers in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci 7(5):307–316

    Google Scholar 

  • Naz I, Ahmad H, Khokhar SN, Khan K, Shah AH (2016) Impact of zinc solubilizing bacteria on zinc contents of wheat. Am Eurasian J Agric Environ Sci 16:449–454

    CAS  Google Scholar 

  • Oliveira CA, Alvesb VMC, Marreib IE, Gomesb EA, Scottia MR, Carneiro NP (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Pandey A, Kumar SJ (1989) Soil beneficial bacterial and their role in plant growth promotion. Sci Indian Res 48:134–144

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting Rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Ponmurugan P, Gopi C (2006) Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J Agron 5:600–604

    Article  Google Scholar 

  • Prajapati K, Modi H (2016) Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Int J Adv Res Biol Sci 3:168–173

    CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260

    Chapter  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7

    Google Scholar 

  • Puente M, Li C, Bashan Y (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650

    Article  CAS  PubMed  Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestic 4:112

    Article  Google Scholar 

  • Ram H, Malik SS, Dhaliwal SS, Kumar B, Singh Y (2015) Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels. Plant Soil Environ 61:122–126

    Article  CAS  Google Scholar 

  • Rawia EA, Nemat MA, Hamouda HA (2009) Evaluate effectiveness of bio and mineral fertilization on the growth parameters and marketable cut flowers of Matthiola incana L. Am Eur J Environ Sci 5:509–518

    Google Scholar 

  • RoyChowdhury DE, Paul MA, Banerjee SK (2014) A review on the effects of biofertilizers and biopesticides on rice and tea cultivation and productivity. Int J Sci Eng Technol 2:96–106

    Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol 7:202–209

    Article  Google Scholar 

  • Santos VB, Araujo SF, Leite LF (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3):339–353

    Article  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, pp 201–276

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Stevenson FJ (1986) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York, pp 231–284

    Google Scholar 

  • Subhashini DV (2015) Growth promotion and increased potassium uptake of tobacco by potassium-mobilizing bacterium Frateuria aurantia grown at different potassium levels in vertisol. Commun Soil Sci Plant Anal 46(2):210–220

    Article  CAS  Google Scholar 

  • Subraya BK, Madaiah D, Dinesh Kumar M (2017) Effect of integrated nutrient management on growth and physiological parameters of strawberry (Fragaria × ananassa Duch) under naturally-ventilated polyhouse. Int J Farm Sci 7(3):72–75

    Google Scholar 

  • Sudhir U, Meshram A, Jager G (1983) Antagonism of Azotobacter chroococcum isolates to Rhizoctonia solani. Eur J Plant Pathol 89:91–197

    Google Scholar 

  • Sundaravarathan S, Kannaiyan S (2002) Influence of Azolla and Sesbania rostrata application on changes in microbial population and enzymes in rice soils. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Alpha Science International, Pangbourne, pp 251–225

    Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact in microbial soil microbial communities: a review. Biomed Res Int 2013:11

    Article  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017) Mycorrhiza: nutrient uptake, biocontrol, ecorestoration. Springer, Cham. ISBN 978-3-319-68867-1. http://www.springer.com/us/book/9783319688664

    Google Scholar 

  • Vassilev N, Vassileva M, Bravo V, Fernandez M, Nikolaev I (2007) Simultaneous phytase production and rock phosphate solubilization by Aspergillus niger grown on dry olive wastes. Ind Crop Prod 2007:332–336

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Yao Q, Xiaolin L, Gu F, Peter C (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230:279–285

    Article  CAS  Google Scholar 

  • Yao YB, Zhanga B, Yuhua T, Miao Z, Ke ZB, Bowen Z, Meng ZB, Bin Y (2018) Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Res 216:158–164

    Article  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes: a review. Biotechnol Pharm Res 5(1):1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, G.C., Goyal, R.K., Puranik, S., Waghmar, V., Vikram, K.V., Sruthy, K.S. (2020). Biofertilizers Toward Sustainable Agricultural Development. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbe Symbiosis. Springer, Cham. https://doi.org/10.1007/978-3-030-36248-5_7

Download citation

Publish with us

Policies and ethics