Skip to main content

Additive Biomanufacturing Processes to Fabricate Scaffolds for Tissue Engineering

  • Chapter
  • First Online:
Virtual Prototyping & Bio Manufacturing in Medical Applications

Abstract

Tissue engineering is a rapidly expanding multidisciplinary and interdisciplinary field exploiting biomaterials, living cells, and biomolecular signals to produce constructs to restore, maintain, or enhance the function of tissues or organs. Additive manufacturing, with a high degree of freedom either for the design of scaffolds (pore size, pore geometry, orientation, interconnectivity, etc.) or for its fabrication, obtains significant attentions in the field of tissue engineering. This book chapter introduces the concept of tissue engineering and main tissue engineering strategies. It discusses the role and main requirements of scaffolds as well as reviewing the main conventional and additive manufacturing techniques used to produce scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Do, B. Khorsand, S.M. Geary, A.K. Salem, 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4, 1742–1762 (2015)

    Article  Google Scholar 

  2. F.P. Melchels, M. Domingos, T.J. Klein, J. Malda, P. Bartolo, D.H. Hutmacher, Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37, 1079–1104 (2012)

    Article  Google Scholar 

  3. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014)

    Article  Google Scholar 

  4. R.F. Pereira, P.J. Bartolo, 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci. 2015, 42458 (2015)

    Google Scholar 

  5. R.F. Pereira, P.J. Bartolo, 3D photo-fabrication for tissue engineering and drug delivery. Engineering 1, 91–113 (2015)

    Article  Google Scholar 

  6. N.A. Sears, D.R. Seshadri, P.S. Dhavalikar, E. Cosgriff-Hernandez, A review of three-dimensional printing in tissue engineering. Tissue Eng. Pt. B 22, 298–310 (2016)

    Article  Google Scholar 

  7. D.O. Visscher, M.N. Helder, S. Gibbs, T. Forouzanfar, P.P. Zuijlen, J. Wolff, Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 34, 700–710 (2016)

    Article  Google Scholar 

  8. C. Vyas, R. Pereira, B. Huang, F. Liu, W. Wang, P. Bartolo, Engineering the vasculature with additive manufacturing. Curr. Opin. Biomed. Eng. 2, 1–13 (2017)

    Article  Google Scholar 

  9. J.R. Fuchs, B.A. Nasseri, J.P. Vacanti, Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 72, 577–581 (2001)

    Article  Google Scholar 

  10. R.S. Katari, A. Peloso, G. Orlando, Tissue engineering. Adv. Surg. 48, 137–154 (2014)

    Article  Google Scholar 

  11. J.M. Lee, W.Y. Yeong, Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv. Healthc. Mater. 5, 2856–2865 (2016)

    Article  Google Scholar 

  12. K. Lee, E.A. Silva, D.J. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8, 153–170 (2011)

    Article  Google Scholar 

  13. K. Matsuura, R. Utoh, K. Nagase, T. Okano, Cell sheet approach for tissue engineering and regenerative medicine. J. Control. Release 190, 228–239 (2014)

    Article  Google Scholar 

  14. J.W. Nichol, A. Khademhosseini, Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5, 1312–1319 (2009)

    Article  Google Scholar 

  15. F. Pati, J. Gantelius, H.A. Svahn, 3D bioprinting of tissue/organ models. Ang. Chem. Int. 55, 4650–4665 (2016)

    Article  Google Scholar 

  16. D.L. Elbert, Bottom-up tissue engineering. Curr. Opin. Biotechnol. 22, 674–680 (2011)

    Article  Google Scholar 

  17. T. Okudaira, R. Yabuta, H. Mizumoto, T. Kajiwara, Fabrication of a fiber-type hepatic tissue by bottom-up method using multilayer spheroids. J. Biosci. Bioeng. 123, 739–747 (2017)

    Article  Google Scholar 

  18. N.C. Rivron, J. Rouwkema, R. Truckenmuller, M. Karperien, J. Boer, C.A. Blitterswijk, Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 30, 4851–4858 (2009)

    Article  Google Scholar 

  19. B. Guillotin, F. Guillemot, Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29, 183–190 (2011)

    Article  Google Scholar 

  20. S. Guven, P. Chen, F. Inci, S. Tasoglu, B. Erkmen, U. Demirci, Multiscale assembly for tissue engineering and regenerative medicine. Trends Biotechnol. 33, 269–279 (2015)

    Article  Google Scholar 

  21. M. Habib, K. Shapira-Schweitzer, O. Caspi, A. Gepstein, G. Arbel, D. Aronson, D. Seliktar, L. Gepstein, A combined cell therapy and in-situ tissue-engineering approach for myocardial repair. Biomaterials 32(30), 7514–7523 (2011)

    Article  Google Scholar 

  22. J.S. Liu, Z.J. Gartner, Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol. 22, 683–691 (2012)

    Article  Google Scholar 

  23. K. Jakab, A. Neagu, V. Mironov, R.R. Markwald, G. Forgacs, Engineering biological structures of prescribed shape using self-assembling multicellular systems. PNAS 101, 2864–2869 (2004)

    Article  Google Scholar 

  24. P.J. Bartolo, C.K. Chua, H.A. Almeida, S.M. Chou, A.S.C. Lim, Biomanufacturing for tissue engineering: present and future trends. Virtual Phys. Prototyping 4, 203–216 (2009)

    Article  Google Scholar 

  25. P. Bartolo, J.P. Kruth, J. Silva, G. Levy, A. Malshe, K. Rajurkar, M. Mitsuishi, J. Ciurana, M. Leu, Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann. Manuf. Technol. 61, 635–655 (2012)

    Article  Google Scholar 

  26. N.S. Binulal, M. Deepthy, N. Selvamurugan, K.T. Shalumon, S. Suja, U. Mony, R. Jayakumar, S.V. Nair, Role of nanofibrous poly (caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators. Tissue Eng. A 16, 393–404 (2010)

    Article  Google Scholar 

  27. M.G. Haugh, C.M. Murphy, R.C. McKiernan, C. Altenbuchner, F.J. O’Brien, Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng. A 17, 1201–1208 (2011)

    Article  Google Scholar 

  28. M. Radisic, L. Young, R. Langer, L.E. Frud, G. Vunjak-Novakovic, High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol. Bioeng. 82, 403–414 (2003)

    Article  Google Scholar 

  29. N. Bertozzi, F. Simonacci, M.P. Grieco, E. Grignaffini, E. Raposio, The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann. Med. Surg. 20, 41–48 (2017)

    Article  Google Scholar 

  30. G. Caetano, R. Violante, A.B. Sant’Ana, A.B. Murashima, M. Domingos, A. Gibson, P. Bartolo, Cellularized versus decellularized scaffolds for bone regeneration. Mater. Lett. 182, 318–322 (2016)

    Article  Google Scholar 

  31. C.S. Lin, G. Lin, T.F. Lue, Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev. 21, 2770–2778 (2012)

    Article  Google Scholar 

  32. H. Mizuno, M. Tobita, A.C. Uysal, Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30, 804–810 (2012)

    Article  Google Scholar 

  33. T. Pereira, P.A. Armanda-da Silva, I. Amorim, A. Rema, A.R. Caseiro, A. Gartner, M. Rodrigues, M.A. Lopes, P.J. Bartolo, J.D. Santos, A.L. Luis, A.C. Mauricio, Effects of human mesenchymal stem cells isolated from Wharton’s jelly of the umbilical cord and conditioned media on skeletal muscle regeneration using a myectomy model. Stem Cells Int. 2014, 376918 (2014)

    Article  Google Scholar 

  34. T. Pereira, G. Ivanova, A.R. Caseiro, P. Barbosa, P.J. Bartolo, J.D. Santos, A.L. Luís, A.C. Mauricio, MSCs conditioned media and umbilical cord blood plasma metabolomics and composition. PLoS One 25, 1–31 (2014)

    Google Scholar 

  35. E. Raposio, F. Simonacci, R.E. Perrotta, Adipose-derived stem cells: comparison between two methods of isolation for clinical applications. Ann. Med. Surg. 20, 87–91 (2017)

    Article  Google Scholar 

  36. J. Ribeiro, T. Pereira, I. Amorim, A.R. Caseiro, M. Lopes, J. Lima, A. Gartner, J.D. Santos, P.J. Bartolo, J.M. Rodrigues, A.C. Mauricio, A.L. Luís, Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in treatment of chronic skin wounds. Int. J. Med. Sci. 11, 979–987 (2014)

    Article  Google Scholar 

  37. M.E. Gomes, R.L. Reis, Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2 Systems for temporary replacement and advanced tissue regeneration. Int. Mater. Rev. 49, 274–285 (2004)

    Article  Google Scholar 

  38. H. Naderi, M.M. Matin, A.R. Bahrami, Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J. Biomater. Appl. 26, 383–417 (2011)

    Article  Google Scholar 

  39. H.P. Mahajan, Evaluation of chitosan gelatine complex scaffolds for articular cartilage tissue engineering, MSc Thesis, Mississippi State University, USA, 2005

    Google Scholar 

  40. S.W. Choi, J. Xie, Y. Xia, Chitosan-based inverse opals: three-dimensional scaffolds with uniform pore structures for cell culture. Adv. Mater. 21, 2997–3001 (2009)

    Article  Google Scholar 

  41. Y.G. Ko, S. Grice, N. Kawazoe, T. Tateishi, G. Chen, Preparation of collagen-glycosaminoglycan sponges with open surface porous structures using ice particulate template method. Macromol. Biosci. 10, 860–871 (2010)

    Article  Google Scholar 

  42. H. Lu, N. Kawazoe, T. Kitajima, Y. Myoken, M. Tomita, A. Umezawa, G. Chen, Y. Ito, Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials 33, 6140–6146 (2012)

    Article  Google Scholar 

  43. H. Zhang, L. Zhou, W. Zhang, Control of scaffold degradation in tissue engineering: a review. Tissue Eng. Pt. B 20, 492–502 (2014)

    Article  Google Scholar 

  44. F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, S. Davaran, Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial cells. Nanomed. Biotechnol. 45, 185–192 (2017)

    Google Scholar 

  45. M.H. Ho, P.Y. Kuo, H.J. Hsieh, T.Y. Hsien, L.T. Hou, J.Y. Lai, D.W. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25, 129–138 (2004)

    Article  Google Scholar 

  46. X. Jing, H.Y. Mi, L.S. Turng, Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater. Sci. Eng. C 72, 53–61 (2017)

    Article  Google Scholar 

  47. J. Reignier, M.A. Huneault, Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47, 4703–4717 (2006)

    Article  Google Scholar 

  48. Y. Tang, K. Zhao, L. Hu, Z. Wu, Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram. Int. 39, 9703–9707 (2013)

    Article  Google Scholar 

  49. P.J. Bartolo, State of the art of solid freeform fabrication for soft and hard tissue engineering. Des. Nat. III 87, 233–243 (2006)

    Google Scholar 

  50. R. Gabbrielli, I.G. Turner, C.R. Bowen, Development of modelling methods for materials to be used as bone substitutes. Key Eng. Mater. 361, 903–906 (2008)

    Google Scholar 

  51. C. Mota, D. Puppi, F. Chiellini, E. Chiellini, Additive manufacturing techniques for the production of tissue engineering constructs. J. Tissue Eng. Regen. Med. 9, 174–190 (2015)

    Article  Google Scholar 

  52. R.F. Pereira, H.A. Almeida, P.J. Bartolo, Biofabrication of hydrogel constructs, in Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalized Treatments, ed. By J.F. Coelho (Springer, Cham, 2013)

    Google Scholar 

  53. P.J. Bartolo, J. Gaspar, Metal filled resin for stereolithography metal part. CIRP Ann. Manuf. Technol. 57, 235–238 (2008)

    Article  Google Scholar 

  54. P.J. Bartolo, G. Mitchell, Stereo-thermal-lithography. Rapid Prototyp. J. 9, 150–156 (2003)

    Article  Google Scholar 

  55. P.J. Bartolo, Photo-curing modeling: direct irradiation. Int. J. Adv. Manuf. Technol. 32, 480–491 (2007)

    Article  Google Scholar 

  56. M. Dehurtevent, L. Robberecht, J.C. Hornez, A. Thuault, E. Deveaux, P. Behin, Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent. Mater. 33, 477–485 (2017)

    Article  Google Scholar 

  57. J.W. Lee, G. Ahn, D.S. Kim, D.W. Cho, Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron. Eng. 86, 1465–1467 (2009)

    Article  Google Scholar 

  58. J.Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120–133 (2017)

    Article  Google Scholar 

  59. P.J. Bartolo, Stereolithographic processes, in Stereolithography: Materials, Processes and Applications, ed By P.J. Bartolo (Springer, Cham, 2011)

    Google Scholar 

  60. L. Brigo, A. Urciulo, S. Giulitti, G.D. Giustina, M. Tromayer, R. Liska, N. Elvassore, G. Brusatin, 3D high-resolution two-photon crosslinked hydrogel structures for biological studies. Acta Biomater. 55, 373–384 (2017)

    Article  Google Scholar 

  61. C. Dudley, Chromophore design for large two-photon absorption. Opt. Mater. 37, 750–755 (2014)

    Article  Google Scholar 

  62. S.M. Peltola, F.P.W. Melchels, D.W. Grijpma, M. Kellomäki, A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40, 268–280 (2008)

    Article  Google Scholar 

  63. S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography. Carbon 59, 283–288 (2013)

    Article  Google Scholar 

  64. A. Bertsch, S. Zissi, J.Y. Jézéquel, S. Corbel, J.C. André, Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst. Technol. 3, 42–47 (1997)

    Article  Google Scholar 

  65. M.V. Kessels, C. Nassour, P. Grosso, K. Heggarty, Direct write of optical diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter. Opt. Commun. 28, 3089–3094 (2010)

    Article  Google Scholar 

  66. N.E. Fedorovich, M.H. Oudshoorn, D. van Geemen, W.E. Hennink, J. Alblas, W.J.A. Dhert, The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30, 344–353 (2009)

    Article  Google Scholar 

  67. K. Arcaute, B. Mann, R. Wicker, Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6, 1047–1054 (2010)

    Article  Google Scholar 

  68. J.J. Lee, S.G. Lee, J.C. Park, Y.I. Yang, J.K. Kim, Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering. Curr. Appl. Phys. 7S1, 37–40 (2007)

    Article  Google Scholar 

  69. F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010)

    Article  Google Scholar 

  70. R.J. Narayan, A. Doraiswamy, D.B. Chrisey, B.N. Chichkov, Medical prototyping using two photon polymerization. Mater. Today 13, 42–48 (2010)

    Article  Google Scholar 

  71. A. Selimis, V. Mironov, M. Farsari, Direct laser writing: principles and materials for scaffold 3D printing. Microelectron. Eng. 13, 83–89 (2015)

    Article  Google Scholar 

  72. P.X. Lan, J.W. Lee, Y.J. Seol, D.W. Cho, Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J. Mater. Sci. Mater. Med. 20, 271–279 (2009)

    Article  Google Scholar 

  73. T.M. Seck, F.P. Melchels, J. Feijen, D.W. Grijpma, Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. J. Control. Release 148, 34–41 (2010)

    Article  Google Scholar 

  74. V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10, 2062–2070 (2010)

    Article  Google Scholar 

  75. P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv. Funct. Mater. 21, 3642–3651 (2011)

    Article  Google Scholar 

  76. V.B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, O. Akkus, Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Ann. Biomed. Eng. 45, 286–296 (2017)

    Article  Google Scholar 

  77. O. Guillaume, M.A. Geven, C.M. Sprecher, V.A. Stadelmann, D.W. Grijpma, T.T. Tang, L. Qin, Y. Lai, M. Alini, J.D. de Bruijn, H. Yuan, Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater. 54, 386–398 (2017)

    Article  Google Scholar 

  78. J.A. Killion, S. Kehoe, L. Geever, D.M. Devine, E. Sheehan, D. Boyd, C.L. Higginbotham, Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater. Sci. Eng. C 33, 4203–4212 (2013)

    Article  Google Scholar 

  79. H. Jeon, H. Hidai, D.J. Hwang, K.E. Healy, C.P. Gricoropoulos, The effect of micron scale anisotropic cross patterns on fibroblast migration. Biomaterials 31, 4286–4295 (2010)

    Article  Google Scholar 

  80. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B.N. Chichkov, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue Eng. Regen. Med. 1, 443–449 (2007)

    Article  Google Scholar 

  81. X.H. Qin, J. Torgersen, R. Saf, S. Muhleder, N. Pucher, S.C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, R. Liska, Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. J. Polym. Sci. A 51, 4799–4810 (2013)

    Article  Google Scholar 

  82. Y. Lu, G. Mapili, G. Suhali, S. Chen, K. Roy, A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77, 396–405 (2006)

    Article  Google Scholar 

  83. Y. Nahmias, D.J. Odde, Micropatterning of living cells by laser-guided direct writing: application to fabrication of hepatic–endothelial sinusoid-like structures. Nat. Protoc. 1, 2288–2296 (2006)

    Article  Google Scholar 

  84. Y. Nahmias, R.E. Schwartz, C.M. Verfaillie, D.J. Odde, Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng. 92, 129–136 (2005)

    Article  Google Scholar 

  85. D.J. Odde, M.J. Renn, Laser-guided direct writing for applications in biotechnology. Trends Biotechnol. 17, 385–389 (1999)

    Article  Google Scholar 

  86. R. Gaebel, N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, F. Wang, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32, 9218–9230 (2011)

    Article  Google Scholar 

  87. S. Koo, S.M. Santoni, B.Z. Gao, C.P. Grigoropoulos, Z. Ma, Laser-assisted biofabrication in tissue engineering and regenerative medicine. J. Mater. Res. 32, 128–142 (2017)

    Article  Google Scholar 

  88. J.A. Barron, P. Wu, H.D. Ladouceur, B.R. Ringeisen, Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices 6, 139–147 (2004)

    Article  Google Scholar 

  89. F. Guillemot, A. Souquet, S. Catros, B. Guillotin, Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5, 507–515 (2010)

    Article  Google Scholar 

  90. I.A. Paun, M. Zamfirescu, M. Mihailescu, C.R. Luculescu, C.C. Mustaciosu, I. Dorobantu, B. Calenic, M. Dinescu, Laser micro-patterning of biodegradable polymer blends for tissue engineering. J. Mater. Sci. 50, 923–936 (2015)

    Article  Google Scholar 

  91. P.K. Wu, B.R. Ringeisen, Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2, 014111 (2010)

    Article  Google Scholar 

  92. V. Kerique, F. Guillemot, I. Arnauld, B. Guillotin, S. Miraux, J. Amédée, J.C. Fricain, S. Catros, In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2, 014101 (2010)

    Article  Google Scholar 

  93. S. Eosoly, D. Brabazon, S. Lohfeld, L. Looney, Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds. Acta Biomater. 6, 2511–2517 (2010)

    Article  Google Scholar 

  94. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005)

    Article  Google Scholar 

  95. C.H. Chen, M.Y. Lee, V.B.H. Shyu, Y.C. Chen, C.T. Chen, J.P. Chen, Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering. Mater. Sci. Eng. C 40, 389–397 (2014)

    Article  Google Scholar 

  96. D.W. Weisgerber, K. Erning, C.L. Flanagan, S.J. Hollister, B.A.C. Harley, Evaluation of multi-scale mineralized collagen–polycaprolactone composites for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 61, 318–327 (2016)

    Article  Google Scholar 

  97. H.T. Liao, M.Y. Lee, W.W. Tsai, H.C. Wang, W.C. Lu, Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J. Tissue Eng. Regen. Med. 10, 337–353 (2016)

    Article  Google Scholar 

  98. C. Shuai, P. Li, J. Liu, S. Peng, Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater. Charact. 77, 23–31 (2013)

    Article  Google Scholar 

  99. V.K. Popov, E.N. Antonov, B.N. Bagratashvili, A.N. Konovalov, S.M. Howdle, Selective laser sintering of 3-D biodegradable scaffolds for tissue engineering. Mat. Res. Soc. Symp. Proc., EXS-1, F5.4.1-F.5.4.3, 2004

    Google Scholar 

  100. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. A 55, 203–216 (2001)

    Article  Google Scholar 

  101. T. Cao, K.H. Ho, S.H. Teoh, Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 9, 103–112 (2003)

    Article  Google Scholar 

  102. T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4161 (2004)

    Article  Google Scholar 

  103. J. Korpela, A. Kokkari, H. Korhonen, M. Malin, T. Närhi, J. Seppälä, Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J. Biomed. Mater. Res. B Appl. Biomater. 101, 610–619 (2013)

    Article  Google Scholar 

  104. I.T. Ozbolat, M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016)

    Article  Google Scholar 

  105. J.E. Trachtenberg, J.K. Placone, B.T. Smith, J.P. Fisher, A.G. Mikos, Extrusion-based 3D printing of poly (propylene fumarate) scaffolds with hydroxyapatite gradients. J. Biomater. Sci. 28, 532–554 (2017)

    Article  Google Scholar 

  106. J.E. Trachtenberg, J.K. Placone, B.T. Smith, C.M. Piard, M. Santoro, D.W. Scott, J.P. Fisher, A.G. Mikos, Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design. ACS Biomater Sci. Eng. 2, 1771–1780 (2016)

    Article  Google Scholar 

  107. J.L. Dávila, M.S. Freitas, P. Inforçatti Neto, Z.C. Silveira, J.V.L. Silva, M.A. d’Ávila, Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J. Appl. Polym. Sci. 133, 43031 (2016)

    Article  Google Scholar 

  108. W. Wang, G. Caetano, W.S. Ambler, J.J. Blaker, M.A. Frade, P. Mandal, C. Diver, P.J. Bartolo, Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9, 00992 (2016)

    Article  Google Scholar 

  109. W. Wang, G.F. Caetano, W.H. Chiang, P.J. Bartolo, Morphological, mechanical, and biological assessment of PCL/pristine graphene scaffolds for bone regeneration. Int. J. Bioprint. 2, 95–105 (2016)

    Article  Google Scholar 

  110. G. Vozzi, C. Flaim, A. Ahluwalia, S. Bhatia, Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24, 2533–2540 (2003)

    Article  Google Scholar 

  111. Z. Xiong, Y. Yan, S. Wang, R. Zhang, C. Zhang, Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 46, 771–776 (2002)

    Article  Google Scholar 

  112. T. Billiet, E. Gevaert, T. De Schryver, M. Cornelissen, P. Dubruel, The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35, 49–62 (2014)

    Article  Google Scholar 

  113. H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016)

    Article  Google Scholar 

  114. F. Pati, J. Jang, D.H. Ha, S.W. Kim, J.W. Rhie, J.H. Shim, D.H. Kim, D.W. Cho, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 1–11 (2014)

    Article  Google Scholar 

  115. E.M. Sachs, J.S. Haggerty, M.S. Cima, P.A. Williams, US Pat. 5204055, 1989

    Google Scholar 

  116. S.S. Kim, H. Utsunomiya, J.A. Koski, B.M. Wu, M.J. Cima, J. Sohn, K. Mukai, L.G. Griffith, J.P. Vacanti, Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffolds with an intrinsic network of channels. Ann. Surg. 228, 8–13 (1998)

    Article  Google Scholar 

  117. B. Leukers, H. Gulkan, S.H. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. 16, 1121–1124 (2005)

    Google Scholar 

  118. J.A. Inzana, D. Olvera, S.M. Fuller, J.P. Kelly, O.A. Graeve, E.M. Schwarz, S.L. Kates, H.A. Awad, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35, 4026–4034 (2014)

    Article  Google Scholar 

  119. Y. Wang, K. Wang, X. Li, Q. Wei, W. Chai, S. Wang, Y. Che, T. Lu, B. Zhang, 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60: 40 for bone tissue engineering applications. PLoS One 12, 0174870 (2017)

    Google Scholar 

  120. Z. Zhou, E. Cunningham, A. Lennon, H.O. McCarthy, F. Buchanan, S.A. Clarke, N. Dunne, Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures. J. Mech. Behav. Biomed. Mater. 70, 68–83 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Jorge Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, B., Almeida, H., Bidanda, B., Bártolo, P.J. (2021). Additive Biomanufacturing Processes to Fabricate Scaffolds for Tissue Engineering. In: Bidanda, B., Bártolo, P.J. (eds) Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35880-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35880-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35879-2

  • Online ISBN: 978-3-030-35880-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics