Skip to main content

Challenges in Deep Learning-Based Profiled Side-Channel Analysis

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11947))

Abstract

In recent years, profiled side-channel attacks based on machine learning proved to be very successful in breaking cryptographic implementations in various settings. Still, despite successful attacks even in the presence of countermeasures, there are many open questions. A large part of the research concentrates on improving the performance of attacks while little is done to understand them and even more importantly, use that knowledge in the design of more secure implementations. In this paper, we start by briefly recollecting on the state-of-the-art in machine learning-based side-channel analysis. Afterward, we discuss several challenges we believe will play an important role in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.: Mind the portability: a warriors guide through realistic profiled side-channel analysis. Cryptology ePrint Archive, Report 2019/661 (2019). https://eprint.iacr.org/2019/661

  2. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  4. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17

    Chapter  Google Scholar 

  5. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-DeepSCA: cross-device deep learning side channel attack. In: Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019, pp. 134:1–134:6. ACM, New York (2019)

    Google Scholar 

  6. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111, May 2015

    Google Scholar 

  7. Hospodar, G., De Mulder, E., Gierlichs, B.: Least squares support vector machines for side-channel analysis. Center for Advanced Security Research Darmstadt, pp. 99–104, January 2011

    Google Scholar 

  8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 148–179 (2019)

    Google Scholar 

  9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  10. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_5

    Chapter  Google Scholar 

  11. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, New York (2006). ISBN 0-387-30857-1. http://www.dpabook.org/

    MATH  Google Scholar 

  13. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengineering 22(2), 586–594 (2013)

    Google Scholar 

  14. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-channel analysis. Cryptology ePrint Archive, Report 2019/439 (2019). https://eprint.iacr.org/2019/439

  15. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. J. Cryptogr. Eng. 7(4), 343–351 (2017)

    Article  Google Scholar 

  16. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019). https://eprint.iacr.org/2019/168

  17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019)

    Google Scholar 

  18. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  19. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17

    Chapter  MATH  Google Scholar 

  20. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3

    Chapter  Google Scholar 

  21. van der Valk, D., Picek, S.: Bias-variance decomposition in machine learning-based side-channel analysis. Cryptology ePrint Archive, Report 2019/570 (2019). https://eprint.iacr.org/2019/570

  22. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. Cryptology ePrint Archive, Report 2019/803 (2019). https://eprint.iacr.org/2019/803

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stjepan Picek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Picek, S. (2019). Challenges in Deep Learning-Based Profiled Side-Channel Analysis. In: Bhasin, S., Mendelson, A., Nandi, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2019. Lecture Notes in Computer Science(), vol 11947. Springer, Cham. https://doi.org/10.1007/978-3-030-35869-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35869-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35868-6

  • Online ISBN: 978-3-030-35869-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics