Skip to main content

Bioresorbable Nano-Hydroxyapatite Reinforced Magnesium Alloplastic Bone Substitute for Biomedical Applications: A Study

  • Conference paper
  • First Online:
Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites

Abstract

Biodegradable magnesium, when reinforced with nanoparticles, displays significant improvements in its mechanical strength, cell proliferation, and corrosion resistance when compared to existing commercially available alloys. This inimitable behavior of magnesium-based composites makes it a unique offering in orthopedic and mandibular reconstruction applications. Additionally, it displays mechanical properties similar to the natural bone highlighting its huge potential as an orthopedic implant material. The present study focuses on the influence of hydroxyapatite (HA) nanoparticles on mechanical, immersion and cytocompatibility properties of magnesium processed by powder metallurgy technique coupled with hybrid microwave sintering. The inclusion of HA nanoreinforcement restricted the growth of grain size for Mg, thereby resulting in superior biodegradation and biocompatibility properties. Mg–HA nanocomposites displayed excellent corrosion resistance compared to its matrix counterpart showing a near-uniform degradation rate. MC3T3-E1 cells showed an increased cell viability percentage and subsequent low cytotoxicity levels. No obvious toxic effects were observed, which is consistent with the enhanced corrosion resistance of Mg alloys resulting in better cell attachment and viability. Structure–property correlations are drawn and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Materials science and engineering: R: reports 87:1–57

    Article  Google Scholar 

  2. Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Haberland C, Huff S, Miller M, Elahinia M, Dean D (2016) Metals for bone implants: safety, design, and efficacy. Biomanufacturing Rev 1:1

    Google Scholar 

  3. Durairaj R, Ramachandran S (2018) In vitro characterization of electrodeposited hydroxyapatite coatings on titanium (Ti6AL4 V) and magnesium (AZ31) alloys for biomedical application. Int J Electrochem Sci 13:4841–4854

    Article  CAS  Google Scholar 

  4. Eliaz N (2019) Corrosion of metallic biomaterials: a review. Materials (Basel, Switzerland) 12:407

    Article  CAS  Google Scholar 

  5. Gupta M, Meenashisundaram GK (2015) Insight into designing biocompatible magnesium alloys and composites: processing, mechanical and corrosion characteristics. Springer

    Google Scholar 

  6. Tekumalla S, Yang C, Seetharaman S, Wong WLE, Goh CS, Shabadi R, Gupta M (2016) Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium. J Alloy Compd 689:350–358

    Article  CAS  Google Scholar 

  7. Shi L, Shi L, Wang L, Duan Y, Lei W, Wang Z, Li J, Fan X, Li X, Li S, Guo Z (2013) The improved biological performance of a novel low elastic modulus implant. PLoS ONE 8:e55015–e55015

    Article  CAS  Google Scholar 

  8. Nayak S, Bhushan B, Jayaganthan R, Gopinath P, Agarwal RD, Lahiri D (2016) Strengthening of Mg based alloy through grain refinement for orthopaedic application. J Mech Behav Biomed Mater 59:57–70

    Article  CAS  Google Scholar 

  9. Katti KS (2004) Biomaterials in total joint replacement. Colloids Surf B Biointerfaces 39:133–142

    Article  CAS  Google Scholar 

  10. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734

    Article  CAS  Google Scholar 

  11. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng: R: Reports 77:1–34

    Article  Google Scholar 

  12. Parande G, Manakari V, Gupta H, Gupta M (2018) Magnesium-β-Tricalcium phosphate composites as a potential orthopedic implant: a mechanical/damping/immersion perspective. Metals 8:343

    Article  Google Scholar 

  13. Manakari V, Parande G, Gupta M (2017) Selective laser melting of magnesium and magnesium alloy powders: a review. Metals 7:2

    Article  Google Scholar 

  14. Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, Kuhlmann J, Doepke A, Halsall HB, Heineman W (2009) Revolutionizing biodegradable metals. Mater Today 12:22–32

    Article  CAS  Google Scholar 

  15. Tang H, Tao W, Wang C, Yu H (2018) Fabrication of hydroxyapatite coatings on AZ31 Mg alloy by micro-arc oxidation coupled with sol–gel treatment. RSC Advances 8:12368–12375

    Article  CAS  Google Scholar 

  16. Tian Q, Lin J, Rivera-Castaneda L, Tsanhani A, Dunn ZS, Rodriguez A, Aslani A, Liu H (2019) Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants—deposition. Charact Degrad Mech Prop Cytocompatibility Sci Reports 9:810

    Google Scholar 

  17. Shahin M, Munir K, Wen C, Li Y (2019) Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives. Acta Biomater 96:1–19

    Article  CAS  Google Scholar 

  18. Nguyen Q, Gupta M (2008) Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos Sci Technol 68:2185–2192

    Article  CAS  Google Scholar 

  19. Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng, A 531:112–118

    Article  CAS  Google Scholar 

  20. Patelis N, Moris D, Matheiken S, Klonaris C (2016) The potential role of graphene in developing the next generation of endomaterials. BioMed Res Int 2016(Article ID 3180954): 7

    Google Scholar 

  21. Xu HH, Sun L, Weir MD, Takagi S, Chow LC, Hockey B (2007) Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J Biomed Mater Res Part B: Appl Biomater: Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 81:116–125

    Article  Google Scholar 

  22. Roeder RK, Turner CH (2010) Composite biomaterial including anisometric calcium phosphate reinforcement particles and related methods, in, Google Patents

    Google Scholar 

  23. Kujur MS, Manakari V, Parande G, Tun KS, Mallick A, Gupta M (2018) Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles. Ceram Int 44(13):15035–15043

    Article  CAS  Google Scholar 

  24. Beck GR Jr, Ha S-W, Camalier CE, Yamaguchi M, Li Y, Lee J-K, Weitzmann MN (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo, Nanomedicine: Nanotechnology. Biol Med 8:793–803

    CAS  Google Scholar 

  25. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR, Ourdjini A, Medraj M, Daroonparvar M, Hamzah E (2014) Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater Des 53:283–292

    Article  CAS  Google Scholar 

  26. Wong P-C, Tsai P-H, Li T-H, Cheng C-K, Jang JSC, Huang JC (2017) Degradation behavior and mechanical strength of Mg-Zn-Ca bulk metallic glass composites with Ti particles as biodegradable materials. J Alloy Compd 699:914–920

    Article  CAS  Google Scholar 

  27. Del Campo R, Savoini B, Muñoz A, Monge M, Garcés G (2014) Mechanical properties and corrosion behavior of Mg–HAP composites. J Mech Behav Biomed Mater 39:238–246

    Article  CAS  Google Scholar 

  28. Razavi M, Fathi M, Savabi O, Tayebi L, Vashaee D (2018) Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating. J Mater Sci Mater Med 29:159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prasadh, S., Manakari, V., Parande, G., Srivatsan, T.S., Wong, R., Gupta, M. (2019). Bioresorbable Nano-Hydroxyapatite Reinforced Magnesium Alloplastic Bone Substitute for Biomedical Applications: A Study. In: Srivatsan, T., Gupta, M. (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-35790-0_6

Download citation

Publish with us

Policies and ethics