Skip to main content
Log in

Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Magnesium (Mg) alloys as a new group of biodegradable metal implants are being extensively investigated as a promising selection for biomaterials applications due to their apt mechanical and biological performance. However, as a foremost drawback of Mg alloys, the high degradation in body fluid prevents its clinical applications. In this work, a bioceramic composite coating is developed composed of diopside, bredigite, and fluoridated hydroxyapatite on the AZ91 Mg alloy in order to moderate the degradation rate, while improving its bioactivity, cell compatibility, and mechanical integrity. Microstructural studies were performed using a transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, and energy dispersive spectroscopy (EDS). The degradation properties of samples were carried out under two steps, including electrochemical corrosion test and immersion test in simulated body fluid (SBF). Additionally, compression test was performed to evaluate the mechanical integrity of the specimens. L-929 fibroblast cells were cultured on the samples to determine the cell compatibility of the samples, including the cell viability and attachment. The degradation results suggest that the composite coating decreases the degradation and improves the bioactivity of AZ91 Mg alloy substrate. No considerable deterioration in the compression strength was observed for the coated samples compared to the uncoated sample after 4 weeks immersion. Cytotoxicity test indicated that the coatings improve the cell compatibility of AZ91 alloy for L-929 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.

    Article  CAS  Google Scholar 

  2. Kheirkhah M, Fathi M, Salimijazi HR, Razavi M. Surface modification of stainless steel implants using nanostructured forsterite (Mg2SiO4) coating for biomaterial applications. Surf Coat Technol. 2015;276:580–6.

    Article  CAS  Google Scholar 

  3. Burugapalli K, Razavi M, Zhou L, Huang Y. In vitro cytocompatibility study of a medical β-type Ti-35.5 Nb-5.7 Ta titanium alloy. J Biomater Tissue Eng. 2016;6:141–8.

    Article  Google Scholar 

  4. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S et al. The effect of nano-and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials. 2007;28:2946–58.

    Article  CAS  Google Scholar 

  5. Gu X-N, Zheng Y-F. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4:111–5.

    Article  Google Scholar 

  6. Razavi M, Fathi M, Savabi O, Razavi SM, Heidari F, Manshaei M et al. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants. Appl Surf Sci. 2014;313:60–66.

    Article  CAS  Google Scholar 

  7. Kirkland NT, Birbilis N, Staiger M. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012;8:925–36.

    Article  CAS  Google Scholar 

  8. Song G. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701.

    Article  CAS  Google Scholar 

  9. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications. J Biomed Mater Res A. 2015;103:1798–808.

    Article  Google Scholar 

  10. Wong HM, Yeung KW, Lam KO, Tam V, Chu PK, Luk KD et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials. 2010;31:2084–96.

    Article  CAS  Google Scholar 

  11. Ding Y, Wen C, Hodgson P, Li Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B. 2014;2:1912–33.

    Article  CAS  Google Scholar 

  12. Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coat Technol. 2004;185:92–98.

    Article  CAS  Google Scholar 

  13. Zhang X, Yuan G, Niu J, Fu P, Ding W. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. J Mech Behav Biomed Mater. 2012;9:153–62.

    Article  Google Scholar 

  14. Razavi M, Fathi M, Meratian M. Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater Sci Eng A. 2010;527:6938–44.

    Article  Google Scholar 

  15. Song Y, Zhang S, Li J, Zhao C, Zhang X. Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater. 2010;6:1736–42.

    Article  CAS  Google Scholar 

  16. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  CAS  Google Scholar 

  17. Wu C, Chang J. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res B Appl Biomater. 2007;83:153–60.

    Article  Google Scholar 

  18. Wu C, Chang J. A review of bioactive silicate ceramics. Biomed Mater. 2013;8:032001.

    Article  Google Scholar 

  19. Iwata NY, Lee G-H, Tsunakawa S, Tokuoka Y, Kawashima N. Preparation of diopside with apatite-forming ability by sol–gel process using metal alkoxide and metal salts. Colloids Surf B Biointerfaces. 2004;33:1–6.

    Article  CAS  Google Scholar 

  20. Wu C, Chang J. Synthesis and apatite-formation ability of akermanite. Mater Lett. 2004;58:2415–7.

    Article  CAS  Google Scholar 

  21. Hafezi-Ardakani M, Moztarzadeh F, Rabiee M, Talebi AR. Synthesis and characterization of nanocrystalline merwinite (Ca3Mg (SiO4) 2) via sol–gel method. Ceram Int. 2011;37:175–80.

    Article  CAS  Google Scholar 

  22. Wu C, Chang J, Zhai W, Ni S. A novel bioactive porous bredigite (Ca 7 MgSi 4 O 16) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med. 2007;18:857–64.

    Article  CAS  Google Scholar 

  23. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO. J Mater Sci Mater Med. 2015;26:184.

    Article  Google Scholar 

  24. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Regenerative influence of nanostructured bredigite (Ca 7 MgSi 4 O 16)/anodic spark coating on biodegradable AZ91 magnesium alloy implants for bone healing. Mater Lett. 2015;155:97–101.

    Article  CAS  Google Scholar 

  25. Razavi M, Fathi M, Savabi O, Boroni M. A review of degradation properties of Mg based biodegradable implants. Res Rev Mater Sci Chem. 2012;1:15–58.

    Google Scholar 

  26. Boccaccini A, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7(Suppl 5):S581–613.

    Article  CAS  Google Scholar 

  27. Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc. 2008;28:1353–67.

    Article  CAS  Google Scholar 

  28. Kwok C, Wong P, Cheng F, Man H. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl Surf Sci. 2009;255:6736–44.

    Article  CAS  Google Scholar 

  29. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vitro analysis of electrophoretic deposited fluoridated hydroxyapatite coating on micro-arc oxidized AZ91 magnesium alloy for biomaterials applications. Metall Mater Trans A. 2015;46:1394–404.

    Article  CAS  Google Scholar 

  30. Chen Q, Cordero-Arias L, Roether JA, Cabanas-Polo S, Virtanen S, Boccaccini AR. Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition. Surf Coat Technol. 2013;233:49–56.

    Article  CAS  Google Scholar 

  31. Pereda M, Alonso C, Burgos-Asperilla L, Del Valle J, Ruano O, Perez P et al. Corrosion inhibition of powder metallurgy Mg by fluoride treatments. Acta Biomater. 2010;6:1772–82.

    Article  CAS  Google Scholar 

  32. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vitro evaluations of anodic spark deposited AZ91 alloy as biodegradable metallic orthopedic implant, annual research & review in. Biology. 2014;4:3716.

    Google Scholar 

  33. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Biodegradable magnesium alloy coated by fluoridated hydroxyapatite using MAO/EPD technique. Surf Eng. 2014;30:545–51.

    Article  CAS  Google Scholar 

  34. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  35. ASTM International. E9-89a. Standard test methods of compression testing of metallic materials at room temperature. 3. Annual Book of ASTM Standards. Philadelphia, 2000.

  36. Razavi M, Fathi MH, Savabi O, Vashaee D, Tayebi L. Biodegradation, bioactivity and in vivo biocompatibility analysis of plasma electrolytic oxidized (PEO) biodegradable Mg implants, Physical Science. Int J. 2014;4:708.

    Google Scholar 

  37. Witte F, Feyerabend F, Maier P, Fischer J, Störmer M, Blawert C et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 2007;28:2163–74.

    Article  CAS  Google Scholar 

  38. Iafisco M, Ruffini A, Adamiano A, Sprio S, Tampieri A. Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger. Mater Sci Eng C. 2014;35:212–9.

    Article  CAS  Google Scholar 

  39. Ren F, Ding Y, Leng Y. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study. J Biomed Mater Res A. 2014;102:496–505.

    Article  Google Scholar 

  40. Razavi M, Fathi M, Meratian M. Fabrication and characterization of magnesium–fluorapatite nanocomposite for biomedical applications. Mater Charact. 2010;61:1363–70.

    Article  CAS  Google Scholar 

  41. Kirkland N, Lespagnol J, Birbilis N, Staiger M. A survey of bio-corrosion rates of magnesium alloys. Corros Sci. 2010;52:287–91.

    Article  CAS  Google Scholar 

  42. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.

    Article  CAS  Google Scholar 

  43. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C. 2017;71:1253–66.

    Article  CAS  Google Scholar 

  44. ACM Renno, PS Bossini, MC Crovace, ACM Rodrigues, ED Zanotto, NA Parizotto. Characterization and in vivo biological performance of biosilicate. BioMed Res Int. 2013. http://dx.doi.org/10.1155/2013/141427.

  45. Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. Improvement of biodegradability, bioactivity, mechanical integrity and cytocompatibility behavior of biodegradable Mg based orthopedic implants using nanostructured bredigite (Ca7MgSi4O16) bioceramic coated via ASD/EPD technique. Ann Biomed Eng. 2014;42:2537–50.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the contributions of the Isfahan University of Technology, Torabinejad Dental Research Center, and funding support from AFOSR under contract number FA9550-12-1-0225 and the National Science Foundation (NSF) under grant numbers ECCS-1351533 and CMMI-1363485.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Razavi or Daryoosh Vashaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, M., Fathi, M., Savabi, O. et al. Improvement of in vitro behavior of an Mg alloy using a nanostructured composite bioceramic coating. J Mater Sci: Mater Med 29, 159 (2018). https://doi.org/10.1007/s10856-018-6170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6170-1

Navigation