Skip to main content

Microbial Glucuronans and Succinoglycans

Structures, Properties, and Enzymes Acting About Them

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Glucuronan and succinoglycan are two anionic exopoysaccharides produced by some soil bacteria and abundantly published by the community working on high valuable hydrocolloids. The glucuronan is a linear homopolymer of β-(1,4)-d-glucuronic acids sometimes subsituted by O-acetyl, whereas succinoglycan is a ramified heteropolymer of β-(1,6) and β-(1,4) and β-(1,3)-linked O-pyruvylated, O-succinylated and sometimes O-acetylated d-glucoses and d-galactoses. These unique structural features give to these two polysaccharides original physicochemical and rheological properties investigated in 1980s and 1990s. However, contrary to some other microbial polysaccharides, they have known a poor commercial success as texturing agent. The reasons of this “defeat” is difficult to analyze but is probably linked to the technical and economic competitions of other plant, seaweeds, and microbial hydrocolloids. This chapter aims to do the state of the art on structures, production, and rheological properties of these two polysaccharides but also on enzymes acting about them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abe J, Amemura A, Harada T. An endo-(1,6)-β-D-glucanase of Flavobacterium M64 hydrolyzing the octasaccharide repeating unit of succinoglycan to two tetrasaccharides. Agric Biol Chem. 1980;44:1877–84.

    CAS  Google Scholar 

  • Amemura A, Moori K, Harada T. Purification and properties of a specific, inducible β-D-glucanase, succinoglycan depolymerase from Flavobacterium. Biochim Biophys Acta. 1974;334:398–409.

    Article  CAS  Google Scholar 

  • Andhare P, Delattre C, Pierre G, et al. Characterization and rheological behaviour analysis of the succinoglycan produced by Rhizobium radiobacter strain CAS from curd sample. Food Hydrocoll. 2017;64:1–8.

    Article  CAS  Google Scholar 

  • Aono R. The poly-a- and -b-1,4-glucuronic acid moiety of teichuronopeptide from the cell wall of the alkalophilic Bacillus strain C-125. Biochem J. 1990;270:363–7.

    Google Scholar 

  • Battisti L, Lara J, Leigh J. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci U S A. 1992;89:5625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botelho da Silva S, Krolicka M, Van Den Broek LAM, et al. Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydr Polym. 2018;186:299–309.

    Article  CAS  PubMed  Google Scholar 

  • Braccini I, Heyraud A, Perez S. Three dimensional features of bacterial polysaccharide (1→4)-β-d-glucuronan: a molecular modeling study. Biopolymers. 1998;45:165–75.

    Article  CAS  Google Scholar 

  • Chatjigakis AK, Pappas C, Proxenia N, et al. FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydr Polym. 1998;37:395–408.

    Article  CAS  Google Scholar 

  • Courtois J, Seguin JP, Declosmesnil S, et al. A (1→4)-β-d-glucuronan excreted by a mutant of Rhizobium meliloti M5N1 strain. J Carbohydr Chem. 1993;12:441–8.

    Article  CAS  Google Scholar 

  • Da Costa A, Michaud P, Petit E, et al. Purification and properties of a glucuronan lyase from Sinorhizobium meliloti M5N1CS (NCIMB 40472). Appl Environ Microbial. 2001;67:5197–203.

    Article  Google Scholar 

  • De Nooy AEJ, Besemer AC, Van Bekkum H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res. 1995;269:89–98.

    Article  Google Scholar 

  • de Ruiter GA, Josso SL, Colquhoun IJ, Voragen AGJ, Rombouts FM. Isolation and characterization of β-(1–4)-d-glucuronans from extracellular polysaccharides of moulds belonging to Mucorales. Carbohydr Polym. 1992;18:1–7.

    Article  Google Scholar 

  • Delattre C, Michaud P, Elboutachfaiti R, et al. Production of oligocellouronates by biodegradation of oxidized cellulose. Cellulose. 2006;13:63–71.

    Article  CAS  Google Scholar 

  • Delattre C, Pierre G, Gardarin C, et al. Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohydr Polym. 2015;116:34–41.

    Article  CAS  PubMed  Google Scholar 

  • Depree J, Emerson GW, Sullivan PA. The cell wall of the oleaginous yeast Trichosporon cutaneum. J Gen Microbiol. 1993;139:2123–33.

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Darnall DW, Villa VD. Two distinct classes of polyuronide from the cell walls of a dimorphic fungus, Mucor rouxii. J Bacteriol. 1983;155:1088–93.

    Google Scholar 

  • Elboutachfaiti R, Delattre C, Petit E, et al. Improved isolation of glucuronan from algae and the production of glucuronic acid oligosaccharides using a glucuronan lyase. Carbohydr Res. 2009;344:1670–5.

    Article  CAS  Google Scholar 

  • Elboutachfaiti R, Delattre C, Petit E, et al. Polyglucuronic acids: structures, functions and degrading enzymes. Carbohydr Polym. 2011;84:1–13.

    Article  CAS  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker G. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol. 1993;175:7033–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravanis G, Milas M, Rinaudo M. Rheological behaviour of a succinoglycan polysaccharide in dilute and semi-dilute solutions. Int J Biol Macromol. 1990;12:201–6.

    Article  CAS  PubMed  Google Scholar 

  • Halder U, Banerjee A, Bandopadhyay R. Structural and functional properties, biosynthesis and patenting trends of bacterial succinoglycan: a review. Indian J Microbiol. 2017;57:278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada T, Yoshimura T, Hidaka H, et al. Production of new acidic polysaccharide, succinoglycan, by Alcaligenes faecalis var. myxogenes. Agric Biol Chem. 1965;29:757.

    Article  CAS  Google Scholar 

  • Helbert W, Poulet L, Drouillard S, et al. Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci U S A. 2019;116:6063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyraud A, Courtois J, Dantas L, et al. Structural characterization and rheological properties of an extracellular glucuronan produced by a Rhizobium meliloti M5N1 mutant strain. Carbohydr Res. 1993;240:71–8.

    Article  CAS  PubMed  Google Scholar 

  • Hisamatsu M, Sano K, Amemura A, Harada T. Acid polysaccharides containing succinic acid in various strains of Agrobacterium. Carbohydr Res. 1978;61:89–96.

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    Article  CAS  PubMed  Google Scholar 

  • Jausovec D, Vogrincic R, Kokol V. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym. 2015;116:74–85.

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ye W, Liu L, et al. Cellulose nanofibers prepared using the TEMPO/laccase/O2 system. Biomacromolecules. 2017;18(1):288–94.

    Article  CAS  PubMed  Google Scholar 

  • Khan T, Hyun SH, Park JK. Production of glucuronan oligosaccharides using the waste beer fermentation broth as a basal medium. Enzym Microb Technol. 2007;42:89–92.

    Article  CAS  Google Scholar 

  • Kikuchi M, Konno N, Suzuki T, et al. A bacterial endo-1,4-β-glucuronan lyase, CUL-I from Brevundimonas sp. SH203, belonging to a novel polysaccharide lyase family. Protein Expr Purif. 2020;166:105502.

    Article  CAS  PubMed  Google Scholar 

  • Konno N, Habu N, Maeda I, Azuma N, et al. Cellouronate (β-1,4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: purification and characterization. Carbohydr Polym. 2006;64:589–96.

    Article  CAS  Google Scholar 

  • Konno N, Habu N, Lihashi N, et al. Purification and characterization of exotype cellouronate lyase. Cellulose. 2008;15:453–63.

    Article  CAS  Google Scholar 

  • Konno N, Igarashi K, Habu N, et al. Cloning of the Trichoderma reesei cDNA encoding a glucuronan lyase belonging to a novel polysaccharide lyase family. Appl Environ Microbiol. 2009a;75:101–7.

    Article  CAS  PubMed  Google Scholar 

  • Konno N, Ishida T, Igarashi K, et al. Crystal structure of polysaccharide lyase family 20 endo-β-1,4-glucuronan lyase from filamentous fungus Trichoderma reesei. FEBS Lett. 2009b;583:1323–6.

    Article  CAS  PubMed  Google Scholar 

  • Leigh JA, Lee CC. Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules. J Bacteriol. 1988;170:3327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombart V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J. 2010;432:437–44.

    Article  CAS  Google Scholar 

  • Mac Donald LC, Weiler EB, Berger BW. Engineering broad-spectrum digestion of polyuronides from an exolytic polysaccharide lyase. Biotechnol Biofuels. 2016;9:43–55.

    Article  CAS  Google Scholar 

  • Manivasagan P, Kim SK. Extracellular polysaccharides produced by marine bacteria. Adv Food Nutr Res. 2014;72:79–94.

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Adlercreutz P. Mediator facilitated, laccase catalysed oxidation of granular potato starch and the physico-chemical characterization of the oxidized products. Bioresour Technol. 2009;100:3576–84.

    Article  CAS  PubMed  Google Scholar 

  • McNeil M, Darvill J, Darvill AG, Albersheim P, van Veen R, Hooykaas P, Schilperoort R, Dell A. The discernible, structural features of the acidic polysaccharides secreted by different Rhizobium species are the same. Carbohydr Res. 1986;146:307–26.

    Article  CAS  Google Scholar 

  • Navarini L, Cesdro A, Ross-Murphy SB. Exopolysaccharides from Rhizobium meliloti YE-2 grown under different osmolarity conditions: viscoelastic properties. Carbohydr Res. 1992;223:227–34.

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu H, Komagata K, Amemura A, et al. A succinoglycan-decomposing bacterium, Cytophaga arvensicola sp. Nov. J Gen Appl Microbiol. 1982;28:369–88.

    Article  CAS  Google Scholar 

  • Pierre G, Punta C, Delattre C, et al. TEMPO-mediated oxidation of polysaccharides: an ongoing story. Carbohydr Polym. 2017;165:71–85.

    Article  CAS  PubMed  Google Scholar 

  • Reinhold B, Chan S, Reuber L, et al. Detailed structure characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm 1020. J Bacteriol. 1994;176:2997–002.

    Article  Google Scholar 

  • Simsek S, Mert B, Campanella OH, et al. Chemical and rheological properties of bacterial succinoglycan with distinct structural characteristics. Carbohydr Polym. 2009;76:320–4.

    Article  CAS  Google Scholar 

  • Slagman S, Zuihof H, Franssen MCR. Laccase-mediated grafting on biopolymers and synthetic polymers: a critical review. Chem Bio Chem. 2018;19(4):288–311.

    Article  CAS  PubMed  Google Scholar 

  • Stefke B, Windeisen E, Schwanninger M, et al. Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods. Anal Chem. 2008;4:1272–9.

    Article  CAS  Google Scholar 

  • Stredansky M, Conti E. Succinoglycan production by solid-state fermentation with agrobacterium tumefaciens. App Microbiol Biotechnol. 1999;52:332–7.

    Article  CAS  Google Scholar 

  • Stredansky M. Succinoglycan. Biopolymers. 2002;5:159–77.

    Google Scholar 

  • Sugimoto I, Hiramatsu S, Murakami D, Usami S, Yamada T. Algal-lytic activities encoded by Chlorella virus CVK2. Virology. 2000;277:119–26.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto I, Onimatsu H, Fujie M, Usami S, Yamada T. vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2. FEBS Lett. 2004;559:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Bouissil S, Gantumur E, et al. Use of anionic polysaccharides in the development of 3D bioprinting technology. Appl Sci. 2019;9(13):2596. https://doi.org/10.3390/app9132596.

    Article  CAS  Google Scholar 

  • Timell TE, Enterman W, Spencer F, et al. The acid hydrolysis of glycosides. II. Effect of substituents at C-5. Can J Chem. 1965;43:2296–305.

    Article  CAS  Google Scholar 

  • Wang LX, Wang Y, Pellock B, et al. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J Bacteriol. 1999;181:6788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip VLY, Withers SG. Breakdown of oligosaccharides by the process of elimination. Curr Opin Chem Biol. 2006;10:147–55.

    Article  CAS  PubMed  Google Scholar 

  • York G, Walker G. The Rhizobium meliloti ExoK and ExsH glycanases specifically depolymerase nascent succinoglycan chains. Proc Natl Acad Sci U S A. 1998;95:4912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Michaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dubessay, P. et al. (2021). Microbial Glucuronans and Succinoglycans. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics