Skip to main content

Advertisement

Log in

Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Recently the concept that gap junctions play a role in cancer cell metastasis has emerged. However, the mechanism by which this might occur is unknown. To examine this issue a metastatic breast cancer cell line, MDA-MB-435, was stably transfected with human Cx43 cDNA. Four clones of 435 transfectants (435/Cx43+ c1, c6, c8, c14) and two clones of plasmid control (435/hy) were isolated and examined in this study. We found that expressing Cx43 in MDA-MB-435 cells decreased their expression of Cx32 but did not affect gap junctional intercellular communication, migration or invasion through Matrigel®. However, forced expression of Cx43 decreased the growth of MDA-MB-435 cells, decreased expression of N-cadherin, which is frequently associated with an aggressive phenotype, and increased MDA-MB-435 sensitivity to apoptosis. More importantly, there were fewer lung metastases in mice injected with 435/Cx43+ cells relative to mice injected with 435/hy. These results suggest that expressing Cx43 in breast cancer cells decreases their metastatic potential through a mechanism independent of gap junctional communication but, rather, related to N-cadherin expression and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GJIC:

Gap junctional intercellular communication

Cx:

Connexin

References

  1. Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209(29):1248–1249. doi:10.1038/2091248a0

    Article  PubMed  CAS  Google Scholar 

  2. Yamasaki H, Mesnil M, Omori Y et al (1995) Intercellular communication and carcinogenesis. Mutat Res—Fundam Mol Mech Mutagen 333(1–2):181–188

    Article  CAS  Google Scholar 

  3. Ito A, Katoh F, Kataoka TR et al (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 105(9):1189–1197. doi:10.1172/JCI8257

    Article  PubMed  CAS  Google Scholar 

  4. Nicolson GL, Dulski KM, Trosko JE (1988) Loss of intercellular junctional communication correlates with metastatic potential in mammary adenocarcinoma cells. Proc Natl Acad Sci USA 85(2):473–476. doi:10.1073/pnas.85.2.473

    Article  PubMed  CAS  Google Scholar 

  5. Zhang J, Li W, Sumpio BE et al (2003) Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells. Biochem Biophys Res Commun 306(3):746–749. doi:10.1016/S0006-291X(03)01044-1

    Article  PubMed  CAS  Google Scholar 

  6. Krutovskikh VA, Troyanovsky SM, Piccoli C et al (2000) Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19(4):505–513. doi:10.1038/sj.onc.1203340

    Article  PubMed  CAS  Google Scholar 

  7. Mehta P, Perez-Stable C, Nadji M et al (1999) Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet 24(1–2):91–110. doi:10.1002/(SICI)1520-6408(1999)24:1/2<91::AID-DVG10>3.0.CO;2-#

    Article  PubMed  CAS  Google Scholar 

  8. Saunders MM, Seraj MJ, Li Z et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61(5):1765–1767

    PubMed  CAS  Google Scholar 

  9. Kapoor P, Suva LJ, Welch DR et al (2008) Osteoprotegrin and the bone homing and colonization potential of breast cancer cells. J Cell Biochem 103(1):30–41. doi:10.1002/jcb.21382

    Article  PubMed  CAS  Google Scholar 

  10. Li Z, Zhou Z, Daniel EE (1993) Expression of gap junction connexin 43 and connexin 43 mRNA in different regional tissues of intestine in dog. Am J Physiol 265:G911–G916

    PubMed  CAS  Google Scholar 

  11. Li Z, Zhou Z, Yellowley CE et al (1999) Inhibiting gap junctional intercellular communication alters expression of differentiation markers in osteoblastic cells. Bone 25(6):661–666. doi:10.1016/S8756-3282(99)00227-6

    Article  PubMed  CAS  Google Scholar 

  12. Harris SA, Enger RJ, Riggs BL et al (1995) Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10(2):178–186

    Article  PubMed  CAS  Google Scholar 

  13. Li Z, Zhou Z, Saunders MM et al (2006) Modulation of connexin43 alters expression of osteoblastic differentiation markers. Am J Physiol Cell Physiol 290(4):C1248–C1255. doi:10.1152/ajpcell.00428.2005

    Article  PubMed  CAS  Google Scholar 

  14. Kapoor P, Saunders MM, Li Z et al (2004) Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111(5):693–697. doi:10.1002/ijc.20318

    Article  PubMed  CAS  Google Scholar 

  15. Li Z, Zhou Z, Donahue HJ (2008) Alterations in Cx43 and OB-cadherin affect breast cancer cell metastatic potential. Clin Exp Metastasis 25(3):265–272. doi:10.1007/s10585-007-9140-4

    Article  PubMed  CAS  Google Scholar 

  16. Seraj MJ, Samant RS, Verderame MF et al (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res-Adv Brief 60:2764–2769

    CAS  Google Scholar 

  17. Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15(3):272–306. doi:10.1023/A:1018477516367

    Article  PubMed  CAS  Google Scholar 

  18. McLachlan E, Shao Q, Laird DW (2007) Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol 218(1–3):107–121. doi:10.1007/s00232-007-9052-x

    Article  PubMed  CAS  Google Scholar 

  19. Hirschi KK, Xu CE, Tsukamoto T et al (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7(7):861–870

    PubMed  CAS  Google Scholar 

  20. Qin H, Shao Q, Curtis H et al (2002) Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277(32):29132–29138. doi:10.1074/jbc.M200797200

    Article  PubMed  CAS  Google Scholar 

  21. Laird DW, Fistouris P, Batist G et al (1999) Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59(16):4104–4110

    PubMed  CAS  Google Scholar 

  22. Jongen WMF, Fitzgerald DJ, Asamoto M et al (1991) Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol 114(3):545–555. doi:10.1083/jcb.114.3.545

    Article  PubMed  CAS  Google Scholar 

  23. Prowse DM, Cadwallader GP, Pitts JD (1997) E-cadherin expression can alter the specificity of gap junction formation. Cell Biol Int 21(12):833–843. doi:10.1006/cbir.1997.0202

    Article  PubMed  CAS  Google Scholar 

  24. Terzaghi-Howe M, Chang GW, Popp D (1997) Emergence of undifferentiated rat tracheal cell carcinomas, but not squamous cell carcinomas, is associated with a loss of expression of E-cadherin and of gap junction communication. Carcinogenesis 18(11):2043–2050. doi:10.1093/carcin/18.11.2043

    Article  PubMed  CAS  Google Scholar 

  25. Nieman MT, Prudoff RS, Johnson KR et al (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147(3):631–644. doi:10.1083/jcb.147.3.631

    Article  PubMed  CAS  Google Scholar 

  26. Hazan RB, Phillips GR, Qiao RF et al (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148(4):779–790. doi:10.1083/jcb.148.4.779

    Article  PubMed  CAS  Google Scholar 

  27. Huang RP, Hossain MZ, Huang R et al (2001) Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer 92(1):130–138. doi:10.1002/1097-0215(200102)9999:9999<::AID-IJC1165>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  28. Huang R, Liu YG, Lin Y et al (2001) Enhanced apoptosis under low serum conditions in human glioblastoma cells by connexin 43 (Cx43). Mol Carcinog 32(3):128–138. doi:10.1002/mc.1072

    Article  PubMed  CAS  Google Scholar 

  29. Plotkin LI, Bellido T (2001) Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43. Cell Commun Adhes 8(4–6):377–382. doi:10.3109/15419060109080757

    Article  PubMed  CAS  Google Scholar 

  30. Castro CH, Stains JP, Sheikh S et al (2003) Development of mice with osteoblast-specific connexin43 gene deletion. Cell Commun Adhes 10(4–6):445–450. doi:10.1080/714040466

    Article  PubMed  CAS  Google Scholar 

  31. Kanczuga-Koda L, Sulkowski S, Tomaszewski J et al (2005) Connexins 26 and 43 correlate with Bak, but not with Bcl-2 protein in breast cancer. Oncol Rep 14(2):325–329

    PubMed  CAS  Google Scholar 

  32. Saez CG, Velasquez L, Montoya M et al (2003) Increased gap junctional intercellular communication is directly related to the anti-tumor effect of all-trans-retinoic acid plus tamoxifen in a human mammary cancer cell line. J Cell Biochem 89(3):450–461. doi:10.1002/jcb.10519

    Article  PubMed  CAS  Google Scholar 

  33. Gwak GY, Yoon JH, Yu SJ et al (2006) Anti-apoptotic N-cadherin signaling and its prognostic implication in human hepatocellular carcinomas. Oncol Rep 15(5):1117–1123

    PubMed  CAS  Google Scholar 

  34. Tran NL, Adams DG, Vaillancourt RR et al (2002) Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 277(36):32905–32914. doi:10.1074/jbc.M200300200

    Article  PubMed  CAS  Google Scholar 

  35. Rae JM, Creighton CJ, Meck JM et al (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19. doi:10.1007/s10549-006-9392-8

    Article  PubMed  Google Scholar 

  36. Lacroix M (2008) Persistent use of “false” cell lines. Int J Cancer 122(1):1–4. doi:10.1002/ijc.23233

    Article  PubMed  CAS  Google Scholar 

  37. Sellappan S, Grijalva R, Zhou X et al (2004) Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 64(10):3479–3485. doi:10.1158/0008-5472.CAN-3299-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health grants CA90991 and AG13087 to Henry J. Donahue and CA87228 to Danny R. Welch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Donahue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Zhou, Z., Welch, D.R. et al. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis 25, 893–901 (2008). https://doi.org/10.1007/s10585-008-9208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9208-9

Keywords

Navigation