Skip to main content

Janus or Hydra: The Many Faces of T Helper Cells in the Human Tumour Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

CD4+ T helper (TH) cells are key regulators in the tumour immune microenvironment (TIME), mediating the adaptive immunological response towards cancer, mainly through the activation of cytotoxic CD8+ T cells. After antigen recognition and proper co-stimulation, naïve TH cells are activated, undergo clonal expansion, and release cytokines that will define the differentiation of a specific effector TH cell subtype. These different subtypes have different functions, which can mediate both anti- and pro-tumour immunological responses. Here, we present the dual role of TH cells restraining or promoting the tumour, the factors controlling their homing and differentiation in the TIME, their influence on immunotherapy, and their use as prognostic indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W (2018) CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647. https://doi.org/10.1038/s41577-018-0044-0

    Article  CAS  PubMed  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  3. Patel DD, Kuchroo VK (2015) Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43:1040–1051. https://doi.org/10.1016/j.immuni.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  4. Vinuesa CG, Linterman MA, Yu D, MacLennan IC (2016) Follicular helper T cells. Annu Rev Immunol 34:335–368. https://doi.org/10.1146/annurev-immunol-041015-055605

    Article  CAS  PubMed  Google Scholar 

  5. Bryant VL et al (2007) Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol 179:8180–8190. https://doi.org/10.4049/jimmunol.179.12.8180

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    CAS  PubMed  Google Scholar 

  7. Nishikawa H, Sakaguchi S (2014) Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27:1–7. https://doi.org/10.1016/j.coi.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  8. Pircher A et al (2014) Neoadjuvant chemo-immunotherapy modifies CD4(+)CD25(+) regulatory T cells (Treg) in non-small cell lung cancer (NSCLC) patients. Lung Cancer 85:81–87. https://doi.org/10.1016/j.lungcan.2014.04.001

    Article  PubMed  Google Scholar 

  9. Taylor JE, Callow P, Swiderska A, Kneale GG (2010) Structural and functional analysis of the engineered type I DNA methyltransferase EcoR124I(NT). J Mol Biol 398:391–399. https://doi.org/10.1016/j.jmb.2010.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Passarelli A, Mannavola F, Stucci LS, Tucci M, Silvestris F (2017) Immune system and melanoma biology: a balance between immunosurveillance and immune escape. Oncotarget 8:106132–106142. https://doi.org/10.18632/oncotarget.22190

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dobrzanski MJ (2013) Expanding roles for CD4 T cells and their subpopulations in tumor immunity and therapy. Front Oncol 3:63. https://doi.org/10.3389/fonc.2013.00063

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  13. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. https://doi.org/10.1146/annurev-immunol-031210-101324

    Article  CAS  PubMed  Google Scholar 

  14. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM (2012) The determinants of tumour immunogenicity. Nat Rev Cancer 12:307–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Momtaz P, Postow MA (2014) Immunologic checkpoints in cancer therapy: focus on the programmed death-1 (PD-1) receptor pathway. Pharmgenomics Pers Med 7:357–365. https://doi.org/10.2147/pgpm.s53163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robert C et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384:1109–1117. https://doi.org/10.1016/s0140-6736(14)60958-2

    Article  CAS  PubMed  Google Scholar 

  18. Weber JS et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384. https://doi.org/10.1016/s1470-2045(15)70076-8

    Article  CAS  PubMed  Google Scholar 

  19. Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32:303–315. https://doi.org/10.1007/s10555-012-9415-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haabeth OA et al (2011) Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun 2:240. https://doi.org/10.1038/ncomms1239

    Article  CAS  PubMed  Google Scholar 

  21. Braumuller H et al (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365. https://doi.org/10.1038/nature11824

    Article  CAS  PubMed  Google Scholar 

  22. Bhavsar NA et al (2014) A peripheral circulating TH1 cytokine profile is inversely associated with prostate cancer risk in CLUE II. Cancer Epidemiol Biomarkers Prev 23:2561–2567. https://doi.org/10.1158/1055-9965.epi-14-0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hennequin A et al (2016) Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. Oncoimmunology 5:e1054598. https://doi.org/10.1080/2162402x.2015.1054598

    Article  PubMed  Google Scholar 

  24. Hsu DS et al (2010) Immune signatures predict prognosis in localized cancer. Cancer Invest 28:765–773. https://doi.org/10.3109/07357900903095755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HL et al (2019) Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci Rep 9:3260. https://doi.org/10.1038/s41598-019-40078-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tosolini M et al (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71:1263–1271. https://doi.org/10.1158/0008-5472.can-10-2907

    Article  CAS  PubMed  Google Scholar 

  27. Datta J et al (2015) Anti-HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic response following neoadjuvant therapy in HER2-positive breast cancer. Breast Cancer Res 17:71. https://doi.org/10.1186/s13058-015-0584-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishimura T et al (1999) Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190:617–627. https://doi.org/10.1084/jem.190.5.617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14:717–734. https://doi.org/10.1038/nrclinonc.2017.101

    Article  CAS  PubMed  Google Scholar 

  30. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430. https://doi.org/10.1007/s00262-011-1028-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Enninga EA, Nevala WK, Holtan SG, Leontovich AA, Markovic SN (2016) Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res 26:429–441. https://doi.org/10.1097/cmr.0000000000000281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Protti MP, De Monte L (2012) Cross-talk within the tumor microenvironment mediates Th2-type inflammation in pancreatic cancer. Oncoimmunology 1:89–91. https://doi.org/10.4161/onci.1.1.17939

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nizri E et al (2018) T-Helper 1 immune response in metastatic lymph nodes of pancreatic ductal adenocarcinoma: a marker for prolonged survival. Ann Surg Oncol 25:475–481. https://doi.org/10.1245/s10434-017-6237-0

    Article  PubMed  Google Scholar 

  34. Bohner P et al (2019) Double positive CD4(+)CD8(+) T cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 10:622. https://doi.org/10.3389/fimmu.2019.00622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thorsson V et al (2018) The immune landscape of cancer. Immunity 48:812–830.e814. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Monte L et al (2011) Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208:469–478. https://doi.org/10.1084/jem.20101876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slaney CY, Kershaw MH, Darcy PK (2014) Trafficking of T cells into tumors. Cancer Res 74:7168–7174. https://doi.org/10.1158/0008-5472.can-14-2458

    Article  CAS  PubMed  Google Scholar 

  38. Kaewkangsadan V et al (2018) Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (Th1, Th2) to immune-mediated tumour cell death induced by NAC. BMC Cancer 18:123. https://doi.org/10.1186/s12885-018-4044-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE (2006) GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res 16:3–10. https://doi.org/10.1038/sj.cr.7310002

    Article  CAS  PubMed  Google Scholar 

  40. Gooch JL, Christy B, Yee D (2002) STAT6 mediates interleukin-4 growth inhibition in human breast cancer cells. Neoplasia 4:324–331. https://doi.org/10.1038/sj.neo.7900248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorvik KB et al (2016) Adoptive transfer of tumor-specific Th2 cells eradicates tumors by triggering an in situ inflammatory immune response. Cancer Res 76:6864–6876. https://doi.org/10.1158/0008-5472.can-16-1219

    Article  CAS  PubMed  Google Scholar 

  42. Mattes J et al (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197:387–393. https://doi.org/10.1084/jem.20021683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janota M, Kasalicky J, Lexa J, Stupka J, Fabian J (1989) Diagnosis of myocardial ischemia using functional ST mapping and 201Tl stress scintigraphy. Vnitr Lek 35:433–438

    CAS  PubMed  Google Scholar 

  44. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15:669–682. https://doi.org/10.1038/nri3902

    Article  CAS  PubMed  Google Scholar 

  45. Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21:687–692. https://doi.org/10.1158/1078-0432.ccr-14-1860

    Article  CAS  PubMed  Google Scholar 

  46. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811. https://doi.org/10.1182/blood-2006-02-002774

    Article  CAS  PubMed  Google Scholar 

  47. Roychoudhuri R, Eil RL, Restifo NP (2015) The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol 33:101–111. https://doi.org/10.1016/j.coi.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  48. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21:903–914

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. https://doi.org/10.1146/annurev.immunol.21.120601.141122

    Article  CAS  PubMed  Google Scholar 

  50. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352. https://doi.org/10.1038/ni1178

    Article  CAS  PubMed  Google Scholar 

  51. Mills KH, McGuirk P (2004) Antigen-specific regulatory T cells—their induction and role in infection. Semin Immunol 16:107–117. https://doi.org/10.1016/j.smim.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  52. Vigouroux S, Yvon E, Biagi E, Brenner MK (2004) Antigen-induced regulatory T cells. Blood 104:26–33. https://doi.org/10.1182/blood-2004-01-0182

    Article  CAS  PubMed  Google Scholar 

  53. Brunkow ME et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73. https://doi.org/10.1038/83784

    Article  CAS  PubMed  Google Scholar 

  54. Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Mysliwski A (2004) CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 112:258–267. https://doi.org/10.1016/j.clim.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  55. Chen W (2006) Dendritic cells and (CD4+)CD25+ T regulatory cells: crosstalk between two professionals in immunity versus tolerance. Front Biosci 11:1360–1370

    Article  CAS  PubMed  Google Scholar 

  56. Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520

    CAS  PubMed  Google Scholar 

  57. Lim HW, Hillsamer P, Banham AH, Kim CH (2005) Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175:4180–4183. https://doi.org/10.4049/jimmunol.175.7.4180

    Article  CAS  PubMed  Google Scholar 

  58. Jonuleit H et al (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193:1285–1294. https://doi.org/10.1084/jem.193.11.1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schaefer C et al (2005) Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92:913–920. https://doi.org/10.1038/sj.bjc.6602407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wolf AM et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  61. Ormandy LA et al (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464. https://doi.org/10.1158/0008-5472.can-04-3232

    Article  CAS  PubMed  Google Scholar 

  62. Ichihara F et al (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    PubMed  Google Scholar 

  63. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434. https://doi.org/10.1158/1078-0432.ccr-06-0369

    Article  CAS  PubMed  Google Scholar 

  64. Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. https://doi.org/10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  65. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  CAS  PubMed  Google Scholar 

  66. Chen X et al (2016) CD4+CD25+ regulatory T cells in tumor immunity. Int Immunopharmacol 34:244–249. https://doi.org/10.1016/j.intimp.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  67. Collison LW et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569. https://doi.org/10.1038/nature06306

    Article  CAS  PubMed  Google Scholar 

  68. Jarnicki AG, Lysaght J, Todryk S, Mills KH (2006) Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 177:896–904. https://doi.org/10.4049/jimmunol.177.2.896

    Article  CAS  PubMed  Google Scholar 

  69. Amicarella F et al (2017) Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut 66:692–704. https://doi.org/10.1136/gutjnl-2015-310016

    Article  CAS  PubMed  Google Scholar 

  70. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S (2013) Immune system: a double-edged sword in cancer. Inflamm Res 62:823–834. https://doi.org/10.1007/s00011-013-0645-9

    Article  CAS  PubMed  Google Scholar 

  71. Martin-Orozco N et al (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798. https://doi.org/10.1016/j.immuni.2009.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kryczek I et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149. https://doi.org/10.1182/blood-2009-03-208249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McGeachy MJ et al (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8:1390–1397. https://doi.org/10.1038/ni1539

    Article  CAS  PubMed  Google Scholar 

  74. He D et al (2010) IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 184:2281–2288. https://doi.org/10.4049/jimmunol.0902574

    Article  CAS  PubMed  Google Scholar 

  75. Wang R et al (2018) Th17 cell-derived IL-17A promoted tumor progression via STAT3/NF-kappaB/Notch1 signaling in non-small cell lung cancer. Oncoimmunology 7:e1461303. https://doi.org/10.1080/2162402x.2018.1461303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ueno H, Banchereau J, Vinuesa CG (2015) Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16:142–152. https://doi.org/10.1038/ni.3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng KW et al (2018) Somatic mutation-associated T follicular helper cell elevation in lung adenocarcinoma. Oncoimmunology 7:e1504728. https://doi.org/10.1080/2162402x.2018.1504728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gu-Trantien C et al (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123:2873–2892. https://doi.org/10.1172/jci67428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bindea G et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39:782–795. https://doi.org/10.1016/j.immuni.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  80. Good-Jacobson KL et al (2010) PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol 11:535–542. https://doi.org/10.1038/ni.1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dardalhon V et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9:1347–1355. https://doi.org/10.1038/ni.1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Purwar R et al (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18:1248–1253. https://doi.org/10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu Y et al (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Invest 122:4160–4171. https://doi.org/10.1172/jci65459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lv X, Wang X (2013) The role of interleukin-9 in lymphoma. Leuk Lymphoma 54:1367–1372. https://doi.org/10.3109/10428194.2012.745072

    Article  CAS  PubMed  Google Scholar 

  85. Rivera Vargas T, Humblin E, Vegran F, Ghiringhelli F, Apetoh L (2017) TH9 cells in anti-tumor immunity. Semin Immunopathol 39:39–46. https://doi.org/10.1007/s00281-016-0599-4

    Article  CAS  PubMed  Google Scholar 

  86. Cai L, Zhang Y, Chen H, Hu J (2019) Effect of Th9/IL-9 on the growth of gastric cancer in nude mice. Onco Targets Ther 12:2225–2234. https://doi.org/10.2147/ott.s197816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eller K et al (2011) IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186:83–91. https://doi.org/10.4049/jimmunol.1001183

    Article  CAS  PubMed  Google Scholar 

  88. Jiang R et al (2011) Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 54:900–909. https://doi.org/10.1002/hep.24486

    Article  CAS  PubMed  Google Scholar 

  89. Park O et al (2011) In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology 54:252–261. https://doi.org/10.1002/hep.24339

    Article  CAS  PubMed  Google Scholar 

  90. Voigt C et al (2017) Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci U S A 114:12994–12999. https://doi.org/10.1073/pnas.1705165114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xuan X et al (2019) ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin Transl Oncol. https://doi.org/10.1007/s12094-019-02160-5

  92. Kryczek I et al (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772–784. https://doi.org/10.1016/j.immuni.2014.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kobold S et al (2013) Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol 8:1032–1042. https://doi.org/10.1097/JTO.0b013e31829923c8

    Article  CAS  PubMed  Google Scholar 

  94. Ye ZJ et al (2012) Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett 326:23–32. https://doi.org/10.1016/j.canlet.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  95. Rosmalen JG, van Ewijk W, Leenen PJ (2002) T-cell education in autoimmune diabetes: teachers and students. Trends Immunol 23:40–46

    Article  CAS  PubMed  Google Scholar 

  96. Wang HY, Wang RF (2007) Regulatory T cells and cancer. Curr Opin Immunol 19:217–223. https://doi.org/10.1016/j.coi.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  97. Liyanage UK et al (2006) Increased prevalence of regulatory T cells (Treg) is induced by pancreas adenocarcinoma. J Immunother 29:416–424. https://doi.org/10.1097/01.cji.0000205644.43735.4e

    Article  PubMed  Google Scholar 

  98. Yokokawa J et al (2008) Enhanced functionality of CD4+CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 14:1032–1040. https://doi.org/10.1158/1078-0432.ccr-07-2056

    Article  CAS  PubMed  Google Scholar 

  99. Woo EY et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    CAS  PubMed  Google Scholar 

  100. Erfani N et al (2012) Increase of regulatory T cells in metastatic stage and CTLA-4 over expression in lymphocytes of patients with non-small cell lung cancer (NSCLC). Lung Cancer 77:306–311. https://doi.org/10.1016/j.lungcan.2012.04.011

    Article  PubMed  Google Scholar 

  101. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107:3639–3646. https://doi.org/10.1182/blood-2005-08-3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Motta M et al (2005) Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia 19:1788–1793. https://doi.org/10.1038/sj.leu.2403907

    Article  CAS  PubMed  Google Scholar 

  103. Deng G (2018) Tumor-infiltrating regulatory T cells: origins and features. Am J Clin Exp Immunol 7:81–87

    PubMed  PubMed Central  Google Scholar 

  104. Pfirschke C, Siwicki M, Liao HW, Pittet MJ (2017) Tumor microenvironment: no effector T cells without dendritic cells. Cancer Cell 31:614–615. https://doi.org/10.1016/j.ccell.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  105. Yamazaki S et al (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198:235–247. https://doi.org/10.1084/jem.20030422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ma Y, Shurin GV, Gutkin DW, Shurin MR (2012) Tumor associated regulatory dendritic cells. Semin Cancer Biol 22:298–306. https://doi.org/10.1016/j.semcancer.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194:2985–2991. https://doi.org/10.4049/jimmunol.1403134

    Article  CAS  PubMed  Google Scholar 

  108. Ito T et al (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204:105–115. https://doi.org/10.1084/jem.20061660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Watanabe N et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436:1181–1185. https://doi.org/10.1038/nature03886

    Article  CAS  PubMed  Google Scholar 

  110. Gilliet M, Liu YJ (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 195:695–704. https://doi.org/10.1084/jem.20011603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Conejo-Garcia JR, Rutkowski MR, Cubillos-Ruiz JR (2016) State-of-the-art of regulatory dendritic cells in cancer. Pharmacol Ther 164:97–104. https://doi.org/10.1016/j.pharmthera.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bryant CE et al (2019) Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 86:77–88. https://doi.org/10.1016/j.semcdb.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  113. Lee N, Zakka LR, Mihm MC Jr, Schatton T (2016) Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 48:177–187. https://doi.org/10.1016/j.pathol.2015.12.006

    Article  PubMed  Google Scholar 

  114. Haanen JB et al (2006) Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother 55:451–458. https://doi.org/10.1007/s00262-005-0018-5

    Article  CAS  PubMed  Google Scholar 

  115. Girard JP, Moussion C, Forster R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12:762–773. https://doi.org/10.1038/nri3298

    Article  CAS  PubMed  Google Scholar 

  116. Sackstein R, Schatton T, Barthel SR (2017) T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab Investig 97:669–697. https://doi.org/10.1038/labinvest.2017.25

    Article  CAS  PubMed  Google Scholar 

  117. Amarnath S et al (2011) The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 3:111ra120. https://doi.org/10.1126/scitranslmed.3003130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stathopoulou C et al (2018) PD-1 inhibitory receptor downregulates asparaginyl endopeptidase and maintains Foxp3 transcription factor stability in induced regulatory T cells. Immunity 49:247–263.e247. https://doi.org/10.1016/j.immuni.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kamada T et al (2019) PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 116:9999–10008. https://doi.org/10.1073/pnas.1822001116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Champiat S et al (2017) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23:1920–1928. https://doi.org/10.1158/1078-0432.ccr-16-1741

    Article  CAS  PubMed  Google Scholar 

  121. Bengsch F, Knoblock DM, Liu A, McAllister F, Beatty GL (2017) CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol Immunother 66:1609–1617. https://doi.org/10.1007/s00262-017-2053-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sharma A et al (2019) Anti-CTLA-4 immunotherapy does not deplete FOXP3(+) regulatory T cells (Tregs) in human cancers. Clin Cancer Res 25:1233–1238. https://doi.org/10.1158/1078-0432.ccr-18-0762

    Article  PubMed  Google Scholar 

  123. Liakou CI et al (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci U S A 105:14987–14992. https://doi.org/10.1073/pnas.0806075105

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tang F, Du X, Liu M, Zheng P, Liu Y (2018) Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade? Cell Biosci 8:30. https://doi.org/10.1186/s13578-018-0229-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weber JS (2017) Biomarkers for checkpoint inhibition. Am Soc Clin Oncol Educ Book 37:205–209. https://doi.org/10.14694/edbk_175463

    Article  PubMed  Google Scholar 

  126. Ng Tang D et al (2013) Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res 1:229–234. https://doi.org/10.1158/2326-6066.cir-13-0020

    Article  PubMed  Google Scholar 

  127. Hamid O et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204. https://doi.org/10.1186/1479-5876-9-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Speiser DE, Verdeil G (2017) More T cells versus better T cells in patients with breast cancer. Cancer Discov 7:1062–1064. https://doi.org/10.1158/2159-8290.cd-17-0858

    Article  CAS  PubMed  Google Scholar 

  129. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105:93–103. https://doi.org/10.1038/bjc.2011.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Barnes TA, Amir E (2017) HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer 117:451–460. https://doi.org/10.1038/bjc.2017.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hadler-Olsen E, Wirsing AM (2019) Tissue-infiltrating immune cells as prognostic markers in oral squamous cell carcinoma: a systematic review and meta-analysis. Br J Cancer 120:714–727. https://doi.org/10.1038/s41416-019-0409-6

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang K, Shen T, Siegal GP, Wei S (2017) The CD4/CD8 ratio of tumor-infiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer. Hum Pathol 69:110–117. https://doi.org/10.1016/j.humpath.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  133. Chen X et al (2019) Chemoradiotherapy-induced CD4(+) and CD8(+) T-cell alterations to predict patient outcomes in esophageal squamous cell carcinoma. Front Oncol 9:73. https://doi.org/10.3389/fonc.2019.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vano YA, Petitprez F, Giraldo NA, Fridman WH, Sautes-Fridman C (2018) Immune-based identification of cancer patients at high risk of progression. Curr Opin Immunol 51:97–102. https://doi.org/10.1016/j.coi.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  135. Hiraoka K et al (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280. https://doi.org/10.1038/sj.bjc.6602934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cho Y et al (2003) CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63:1555–1559

    CAS  PubMed  Google Scholar 

  137. Shang B, Liu Y, Jiang SJ (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5:15179. https://doi.org/10.1038/srep15179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhou Y et al (2017) Prognostic value of tumor-infiltrating Foxp3+ regulatory T cells in patients with breast cancer: a meta-analysis. J Cancer 8:4098–4105. https://doi.org/10.7150/jca.21030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Perrone G et al (2008) Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer 44:1875–1882. https://doi.org/10.1016/j.ejca.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  140. Sun L et al (2017) Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis. Oncotarget 8:39658–39672. https://doi.org/10.18632/oncotarget.17340

    Article  PubMed  PubMed Central  Google Scholar 

  141. Marshall EA et al (2016) Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 15:67. https://doi.org/10.1186/s12943-016-0551-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang X et al (2017) Cancer-FOXP3 directly activated CCL5 to recruit FOXP3(+)Treg cells in pancreatic ductal adenocarcinoma. Oncogene 36:3048–3058. https://doi.org/10.1038/onc.2016.458

    Article  CAS  PubMed  Google Scholar 

  143. Hanagiri T et al (2013) Clinical significance of the frequency of regulatory T cells in regional lymph node lymphocytes as a prognostic factor for non-small-cell lung cancer. Lung Cancer 81:475–479. https://doi.org/10.1016/j.lungcan.2013.07.001

    Article  PubMed  Google Scholar 

  144. Chen C et al (2014) Changes of CD4+CD25+FOXP3+ and CD8+CD28− regulatory T cells in non-small cell lung cancer patients undergoing surgery. Int Immunopharmacol 18:255–261. https://doi.org/10.1016/j.intimp.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  145. Geng Y et al (2015) Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem 37:1560–1571. https://doi.org/10.1159/000438523

    Article  CAS  PubMed  Google Scholar 

  146. Nieto JC et al (2019) Migrated T lymphocytes into malignant pleural effusions: an indicator of good prognosis in lung adenocarcinoma patients. Sci Rep 9:2996. https://doi.org/10.1038/s41598-018-35840-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sinicrope FA et al (2009) Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137:1270–1279. https://doi.org/10.1053/j.gastro.2009.06.053

    Article  CAS  PubMed  Google Scholar 

  148. Frey DM et al (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126:2635–2643. https://doi.org/10.1002/ijc.24989

    Article  CAS  PubMed  Google Scholar 

  149. Salama P et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192. https://doi.org/10.1200/jco.2008.18.7229

    Article  PubMed  Google Scholar 

  150. Saito T et al (2016) Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22:679–684. https://doi.org/10.1038/nm.4086

    Article  CAS  PubMed  Google Scholar 

  151. de Chaisemartin L et al (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71:6391–6399. https://doi.org/10.1158/0008-5472.can-11-0952

    Article  PubMed  Google Scholar 

  152. Messina JL et al (2012) 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2:765. https://doi.org/10.1038/srep00765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xue G, Jin G, Fang J, Lu Y (2019) IL-4 together with IL-1beta induces antitumor Th9 cell differentiation in the absence of TGF-beta signaling. Nat Commun 10:1376. https://doi.org/10.1038/s41467-019-09401-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiang Y et al (2019) TNF-alpha enhances Th9 cell differentiation and antitumor immunity via TNFR2-dependent pathways. J Immunother Cancer 7:28. https://doi.org/10.1186/s40425-018-0494-8

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kuang DM et al (2014) B7-H1-expressing antigen-presenting cells mediate polarization of protumorigenic Th22 subsets. J Clin Invest 124:4657–4667. https://doi.org/10.1172/jci74381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhuang Y et al (2012) Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother 61:1965–1975. https://doi.org/10.1007/s00262-012-1241-5

    Article  CAS  PubMed  Google Scholar 

  157. Salaroglio IC et al (2019) Potential diagnostic and prognostic role of microenvironment in malignant pleural mesothelioma. J Thorac Oncol 14:1458–1471. https://doi.org/10.1016/j.jtho.2019.03.029

    Article  CAS  PubMed  Google Scholar 

  158. Yang ZZ et al (2019) Mass cytometry analysis reveals that specific intratumoral CD4(+) T cell subsets correlate with patient survival in follicular lymphoma. Cell Rep 26:2178–2193.e2173. https://doi.org/10.1016/j.celrep.2019.01.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Reuben A et al (2017) TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov 7:1088–1097. https://doi.org/10.1158/2159-8290.cd-17-0256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang C et al (2019) TCR repertoire intratumor heterogeneity of CD4(+) and CD8(+) T cells in centers and margins of localized lung adenocarcinomas. Int J Cancer 144:818–827. https://doi.org/10.1002/ijc.31760

    Article  CAS  PubMed  Google Scholar 

  161. Liu YY et al (2019) Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int J Cancer 145(5):1423–1431. https://doi.org/10.1002/ijc.32145

    Article  CAS  PubMed  Google Scholar 

  162. McGranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–1469. https://doi.org/10.1126/science.aaf1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Geissler K et al (2015) Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology 4:e985082. https://doi.org/10.4161/2162402x.2014.985082

    Article  PubMed  PubMed Central  Google Scholar 

  164. Denkert C et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33:983–991. https://doi.org/10.1200/jco.2014.58.1967

    Article  CAS  PubMed  Google Scholar 

  165. Ozgur HH et al (2014) Regulatory T cells and their prognostic value in hepatopancreatobiliary tumours. Hepato-Gastroenterology 61:1847–1851

    CAS  PubMed  Google Scholar 

  166. Mao Y et al (2016) The Prognostic Value of Tumor-Infiltrating Lymphocytes in Breast Cancer: A Systematic Review and Meta-Analysis. PLoS One 11:e0152500. https://doi.org/10.1371/journal.pone.0152500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Santoiemma PP, Powell DJ Jr (2015) Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther 16:807–820. https://doi.org/10.1080/15384047.2015.1040960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sun DS, Zhao MQ, Xia M, Li L, Jiang YH (2012) The correlation between tumor-infiltrating Foxp3+ regulatory T cells and cyclooxygenase-2 expression and their association with recurrence in resected head and neck cancers. Med Oncol 29:707–713. https://doi.org/10.1007/s12032-011-9903-2

    Article  CAS  PubMed  Google Scholar 

  169. Knol AC et al (2011) Prognostic value of tumor-infiltrating Foxp3+ T-cell subpopulations in metastatic melanoma. Exp Dermatol 20:430–434. https://doi.org/10.1111/j.1600-0625.2011.01260.x

    Article  PubMed  Google Scholar 

  170. Huang Y et al (2014) Prognostic value of tumor-infiltrating FoxP3+ T cells in gastrointestinal cancers: a meta analysis. PLoS One 9:e94376. https://doi.org/10.1371/journal.pone.0094376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang Q et al (2016) Prognostic role of immune cells in hepatitis B-associated hepatocellular carcinoma following surgical resection depends on their localization and tumor size. J Immunother 39:36–44. https://doi.org/10.1097/cji.0000000000000104

    Article  CAS  PubMed  Google Scholar 

  172. Knief J et al (2016) High density of tumor-infiltrating B-lymphocytes and plasma cells signifies prolonged overall survival in adenocarcinoma of the esophagogastric junction. Anticancer Res 36:5339–5345. https://doi.org/10.21873/anticanres.11107

    Article  PubMed  Google Scholar 

  173. Kang MJ et al (2013) Tumor-infiltrating PD1-positive lymphocytes and FoxP3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Transl Oncol 6:282–289. https://doi.org/10.1593/tlo.13256

    Article  PubMed  PubMed Central  Google Scholar 

  174. Liotta F et al (2011) Frequency of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell carcinoma. BJU Int 107:1500–1506. https://doi.org/10.1111/j.1464-410X.2010.09555.x

    Article  CAS  PubMed  Google Scholar 

  175. Li JF et al (2009) The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma. BJU Int 103:399–405. https://doi.org/10.1111/j.1464-410X.2008.08151.x

    Article  PubMed  Google Scholar 

  176. Punt S et al (2016) A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17(+) cell frequency. Cancer Immunol Immunother 65:393–403. https://doi.org/10.1007/s00262-016-1805-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Huang YH, Cao YF, Jiang ZY, Zhang S, Gao F (2015) Th22 cell accumulation is associated with colorectal cancer development. World J Gastroenterol 21:4216–4224. https://doi.org/10.3748/wjg.v21.i14.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Canadian Institutes of Health Research (CIHR FDN-143345 to W.L.L. and PJT-156017 to G.D.) and scholarships from CIHR, Vanier Canada, and the BC Cancer Foundation. F.G. is supported by the Ligue nationale contre le cancer (Paris, France), the Fonds de Recherche en Santé Respiratoire (appel d’offres 2018 emis en commun avec la Fondation du Souffle, Paris, France), ADIR Association and the Foundation Charles Nicolle (Rouen, France). M.C.B.-F. is supported by the São Paulo Research Foundation (FAPESP 2015/17707-5 and 2018/06138-8). L.D.R. is supported by the BC Cancer Foundation and the University of British Columbia, Faculty of Dentistry. E.A.M. is supported by CIHR and the UBC, Faculty of Medicine and is a Vanier Canada Graduate scholar. G.D. is a senior scientist of the Beatrice Hunter Cancer Research Institute (BHCRI), and M.S.-W. is a trainee in the Cancer Research Training Program of the BHCRI, with funds provided by the QEII Health Sciences Centre Foundation and GIVETOLIVE.

Conflict of interest: The authors have no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Guisier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guisier, F. et al. (2020). Janus or Hydra: The Many Faces of T Helper Cells in the Human Tumour Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1224. Springer, Cham. https://doi.org/10.1007/978-3-030-35723-8_3

Download citation

Publish with us

Policies and ethics