Skip to main content

Magnetic Resonance Spectroscopy Methods

  • Chapter
  • First Online:
Neuroimaging in Schizophrenia

Abstract

Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that quantitatively measures the metabolic composition of tissues in vivo using conventional magnetic resonance (MR) scanners. This technology is of special interest for clinical applications in psychiatry due to its non-invasive nature. In recent years, studies have demonstrated its diagnostic capability in psychiatric conditions such as schizophrenia, bipolar disorder, depression, as well as in neurodegenerative disorders and neuro-oncology among others. The most relevant brain chemicals that can be quantified include: N-acetylaspartate (NAA), a neuronal marker; creatine (Cr), involved in energy metabolism; choline (Cho), a key component of myelin; glutamate (Glu), an excitatory neurotransmitter; γ-aminobutyric acid (GABA), an inhibitory neurotransmitter, and glutathione (GSH), an anti-oxidant involved in neuroinflammation. In this chapter, the biological roles of the primary brain metabolites will be discussed. Moreover, the general principles of MRS and the specialized pulse sequences that enable the detection of each of these metabolites will be described. Furthermore, a comprehensive introduction of the most common techniques and examination protocols used in research and clinical applications will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

13C:

Carbon 13

2D COSY:

Two-Dimensional COrrelated SpectroscopY

2D JPRESS:

Two-Dimensional J-resolved Point RESolved Spectroscopy

Cho:

Choline

Cr:

Creatine

CRLB:

Cramer–Rao lower bounds

CSI:

Chemical shift imaging

FT:

Fourier transform

FID:

Free induction decay

fMRI:

functional magnetic resonance imaging

GABA:

gamma-Aminobutyric acid

Gln:

Glutamine

Glu:

Glutamate

Glx:

Both glutamate and glutamine

GPC:

Glycerophosphocholine

GSH:

Glutathione

JPRESS:

J-resolved Point RESolved Spectroscopy

MCI:

Mild cognitive impairment

MEGA PRESS:

MEscher-GArwood Point RESolved Spectroscopy

mI:

myo-Inositol

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NAA:

N-Acetylaspartate

NAAG:

N-Acetylaspartylglutamate

NMDA:

N-Methyl-D-aspartic acid

NMR:

Nuclear magnetic resonance

PCP:

Phencyclidine

PC:

Phosphorylcholine

PCr:

Phosphocreatine

PET:

Positron emission tomography

PRESS:

Point RESolved Spectroscopy

RF:

Radiofrequency

ROI:

Region of interest

ROS:

Reactive oxygen species

STEAM:

STimulated Echo Acquisition Mode

SVS:

Single voxel spectroscopy

TCA:

Tricarboxylic acid cycle

TE:

Echo time

TI:

Inversion time

TR:

Relaxation time

References

  • Agostinho P, Cunha RA, Oliveira C, et al. Curr Pharm Des. 2010;16(25):2766–78.

    Article  CAS  PubMed  Google Scholar 

  • Andrew ER. N.m.r. imaging of intact biological systems. Philos Trans R Soc Lond B Biol Sci. 1980;289(1037):471–81.

    Article  CAS  PubMed  Google Scholar 

  • Andronesi OC, Ramadan S, Ratai EM, Jennings D, Mountford CE, Sorensen AG. Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners. J Magn Reson [Internet]. 2010;203(2):283–93. https://doi.org/10.1016/j.jmr.2010.01.010.

    Article  CAS  Google Scholar 

  • Aue WP, Bartholdi E, Ernst RR. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys [Internet]. 1976;64(5):2229–46. https://doi.org/10.1063/1.432450.

    Article  CAS  Google Scholar 

  • Barker PB. N-acetyl aspartate--a neuronal marker? Ann Neurol. 2001;49(4):423–4.

    Article  CAS  PubMed  Google Scholar 

  • Barkhuijsen H, de Beer R, van Ormondt D. Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson [Internet]. 1987;73(3):553–7. http://linkinghub.elsevier.com/retrieve/pii/0022236487900230.

    CAS  Google Scholar 

  • Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3(9):728–39.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PK, Lowe MJ, Phillips MD. Spectral quality control in motion-corrupted single-voxel J-difference editing scans: an interleaved navigator approach. Magn Reson Med. 2007;58(4):808–12.

    Article  CAS  PubMed  Google Scholar 

  • Bloch F. Nuclear induction. Phys Rev [Internet]. 1946;70(7–8):460–74. https://link.aps.org/doi/10.1103/PhysRev.70.460.

    Article  CAS  Google Scholar 

  • Bloch F, Hansen WW, Packard M. The nuclear induction experiment. Phys Rev [Internet]. 1946;70(7–8):474–85. https://link.aps.org/doi/10.1103/PhysRev.70.474.

    Article  CAS  Google Scholar 

  • Bluml S, Zuckerman E, Tan J, Ross BD. Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J Neurochem. 1998;71(4):1564–76.

    Article  CAS  PubMed  Google Scholar 

  • Blüml S, Tan J, Harris K, Adatia N, Karme A, Sproull T, et al. Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr. 1999;23(2):272–5.

    Article  PubMed  Google Scholar 

  • Bolan PJ, DelaBarre L, Baker EH, Merkle H, Everson LI, Yee D, et al. Eliminating spurious lipid sidebands in 1H MRS of breast lesions. Magn Reson Med. 2002;48:215–22.

    Article  PubMed  Google Scholar 

  • Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci [Internet]. 1987;508:333–48. https://doi.org/10.1111/j.1749-6632.1987.tb32915.x.

    Article  CAS  Google Scholar 

  • Caverzasi E, Pichiecchio A, Poloni GU, Calligaro A, Pasin M, Palesi F, et al. Magnetic resonance spectroscopy in the evaluation of treatment efficacy in unipolar major depressive disorder: a review of the literature. Funct Neurol. 2012;27(1):13–22.

    PubMed  PubMed Central  Google Scholar 

  • Cocuzzo D, Lin A, Ramadan S, Mountford C, Keshava N. Algorithms for characterizing brain metabolites in two-dimensional in vivo MR correlation spectroscopy. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4929–34.

    Google Scholar 

  • Coello E, Noeske R, Burns BL, Gordon JW, Jakary A, Menze B, et al. High-resolution echo-planar spectroscopic imaging at ultra-high field. NMR Biomed [Internet]. 2018:e3950. https://doi.org/10.1002/nbm.3950.

  • Cunningham CH, Vigneron DB, Chen AP, Xu D, Nelson SJ, Hurd RE, et al. Design of flyback echo-planar readout gradients for magnetic resonance spectroscopic imaging. Magn Reson Med. 2005;54(5):1286–9.

    Article  PubMed  Google Scholar 

  • Dreher W, Leibfritz D. On the use of 2-Dimensional-J NMR measurements for in-vivo proton MRS- measurement of homonuclear decoupled spectra without the need for short echo times. Magn Reson Med. 1995;34(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain. Eur J Biochem. 2000;267(16):4912–6.

    Article  CAS  PubMed  Google Scholar 

  • Du F, Cooper AJ, Thida T, Shinn AK, Cohen BM, Öngür D. Myelin and axon abnormalities in schizophrenia measured with magnetic resonance imaging techniques. Biol Psychiatry [Internet]. 2013;74(6):451–7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720707/.

    Article  CAS  Google Scholar 

  • Du F, Cooper AJ, Thida T, Sehovic S, Lukas SE, Cohen BM, et al. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31 P magnetization transfer spectroscopy. JAMA Psychiatry [Internet]. 2014;71(1):19. +.

    Article  CAS  Google Scholar 

  • Edden RAE, Barker PB. Spatial effects in the detection of γ-aminobutyric acid: improved sensitivity at high fields using inner volume saturation. Magn Reson Med. 2007;58(6):1276–82.

    Article  CAS  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med. 1989;9(1):79–93.

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Stanley JA, Nery FG, Monkul ES, Nicoletti MA, Chen H-H, et al. Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord. 2007;9(Suppl 1):119–27.

    Article  PubMed  Google Scholar 

  • Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed [Internet]. 2000;13:129–53. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10861994.

    Article  CAS  Google Scholar 

  • de Graaf RA. In vivo NMR spectroscopy - principles and techniques. 2nd ed. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  • Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, et al. Localized 13C NMR spectroscopy in the human brain of amino acid labeling from d-[1-13C]glucose. J Neurochem. 1994;63(4):1377–85.

    Article  CAS  PubMed  Google Scholar 

  • Haase A, Frahm J, Matthaei D, Hänicke W, Bomsdorf H, Kunz D, et al. MR imaging using stimulated echoes (STEAM). Radiology. 1986;160(3):787–90.

    Article  CAS  PubMed  Google Scholar 

  • Harris K, Lin A, Bhattacharya P, Tran T, Wong W, Ross B. Regulation of NAA-synthesis in the human brain in vivo: Canavan’s disease, Alzheimer’s disease and schizophrenia. In: N-Acetylaspartate [Internet]. New York: Springer; 2006. p. 263–73. http://link.springer.com/10.1007/0-387-30172-0_18.

  • Hertz L, Zielke HR. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 2004;27(12):735–43.

    Article  CAS  PubMed  Google Scholar 

  • Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ. Measurement of brain glutamate using TE-averaged PRESS at 3T. Magn Reson Med. 2004;51(3):435–40.

    Article  CAS  PubMed  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys. 1979;71(11):4546.

    Article  CAS  Google Scholar 

  • Jensen JE, Frederick BD, Wang L, Brown J, Renshaw PF. Two-dimensional, J-resolved spectroscopic imaging of GABA at 4 Tesla in the human brain. Magn Reson Med. 2005;54(4):783–8.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser LG, Young K, Matson GB. Elimination of spatial interference in PRESS-localized editing spectroscopy. Magn Reson Med. 2007;58(4):813–8.

    Article  CAS  PubMed  Google Scholar 

  • Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol. 2007;80 Spec No:S146–52.

    Article  CAS  Google Scholar 

  • Kantarci K. Proton MRS in mild cognitive impairment. J Magn Reson Imaging. 2013;37(4):770–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord. 1994;31(2):125–33.

    Article  CAS  PubMed  Google Scholar 

  • Ke Y, Cohen BM, Bang JY, Yang M, Renshaw PF. Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatry Res. 2000;100(3):169–78.

    Article  CAS  PubMed  Google Scholar 

  • Kegeles LS, Humaran TJ, Mann JJ. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry. 1998;44(6):382–98.

    Article  CAS  PubMed  Google Scholar 

  • Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med [Internet]. 1990;14(1):26–30. http://www.ncbi.nlm.nih.gov/pubmed/2161984.

    Article  CAS  Google Scholar 

  • Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D, et al. Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res. 2012;203(2–3):111–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Ross BD, Harris K, Wong W. Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx. 2005;2(2):197–214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lymer K, Haga K, Marshall I, Sailasuta N, Wardlaw J. Reproducibility of GABA measurements using 2D J-resolved magnetic resonance spectroscopy. Magn Reson Imaging. 2007;25(5):634–40.

    Article  CAS  PubMed  Google Scholar 

  • Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci. 2012;11:199–251.

    Article  PubMed  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ. Simultaneous determination of the rates of the TCA cycle, glucose utilization, μ-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab. 1995;15(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa D, Hashimoto K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid Redox Signal. 2011;15(7):2057–65.

    Article  CAS  PubMed  Google Scholar 

  • Mlynárik V, Gambarota G, Frenkel H, Gruetter R. Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med [Internet]. 2006;56(5):965–70. https://doi.org/10.1002/mrm.21043.

    Article  CAS  Google Scholar 

  • Moffett JR, Namboodiri MA, Neale JH. Enhanced carbodiimide fixation for immunohistochemistry: application to the comparative distributions of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat brain. J Histochem Cytochem. 1993;41(4):559–70.

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81(2):89–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res. 2006;6(5):261–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins PG, McGonigle DJ, O’Gorman RL, Puts NAJ, Vidyasagar R, Evans CJ, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage. 2014;86:43–52.

    Article  CAS  PubMed  Google Scholar 

  • Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med [Internet]. 2001;31(4):269–86. http://www.sciencedirect.com/science/article/pii/S0010482501000063.

    Article  CAS  Google Scholar 

  • Ongür D, Prescot AP, Jensen JE, Cohen BM, Renshaw PF. Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res. 2009;172(1):44–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öz G, Terpstra M, Tkáč I, Aia P, Lowary J, Tuite PJ, et al. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med. 2006;55(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  • Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology [Internet]. 2014;270(3):658–79. http://pubs.rsna.org/doi/10.1148/radiol.13130531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellerin L, Magistretti P. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91:10625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posse S, DeCarli C, Le Bihan D. Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology [Internet]. 1994;192(3):733–8. http://pubs.rsna.org/doi/abs/10.1148/radiology.192.3.8058941.

    Article  CAS  Google Scholar 

  • Posse S, Tedeschi G, Risinger R, Ogg R, Le Bihan D. High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding. Magn Reson Med. 1995;33(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  • Posse S, Otazo R, Dager SR, Alger J. MR spectroscopic imaging: principles and recent advances. J Magn Reson Imaging. 2013;37(6):1301–25.

    Article  PubMed  Google Scholar 

  • Potwarka JJ, Drost DJ, Williamson PC, Carr T, Canaran G, Rylett WJ, et al. A 1H-decoupled 31P chemical shift imaging study of medicated schizophrenic patients and healthy controls. Biol Psychiatry [Internet]. 1999;45(6):687–93. http://linkinghub.elsevier.com/retrieve/pii/S000632239800136X

    Article  CAS  Google Scholar 

  • Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med [Internet]. 1993;30(6):672–9. http://www.ncbi.nlm.nih.gov/pubmed/8139448.

    Article  CAS  Google Scholar 

  • Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev [Internet]. 1946;69(1–2):37–8. https://link.aps.org/doi/10.1103/PhysRev.69.37.

    Article  CAS  Google Scholar 

  • Ramadan S, Andronesi OC, Stanwell P, Lin AP, Sorensen AG, Mountford CE. Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology. 2011;259(2):540–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res. 2009;34(6):1021–9.

    Article  CAS  PubMed  Google Scholar 

  • Ross BD. Real or imaginary? Human metabolism through nuclear magnetism. IUBMB Life. 2000;50(3):177–87.

    Article  CAS  PubMed  Google Scholar 

  • Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265(2):54–84.

    Article  CAS  PubMed  Google Scholar 

  • Rothman DL, Behar KL, Hetherington HP, Shulman RG. Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo. Proc Natl Acad Sci [Internet]. 1984;81(20):6330–4. http://www.pnas.org/cgi/doi/10.1073/pnas.81.20.6330.

    Article  CAS  Google Scholar 

  • Rowland BC, Liao H, Adan F, Mariano L, Irvine J, Lin AP. Correcting for frequency drift in clinical brain MR spectroscopy. J Neuroimaging [Internet]. 2017;27(1):23–8. https://doi.org/10.1111/jon.12388.

    Article  Google Scholar 

  • Scheenen TWJ, Klomp DWJ, Wijnen JP, Heerschap A. Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008a;59(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Scheenen TW, Heerschap A, Klomp DW. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. MAGMA. 2008b;21(1–2):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schousboe A. Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res. 2003;28(2):347–52.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe A, Waagepetersen H. Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res. 2005;8(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  • Schulte RF, Boesiger P. ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed. 2006;19(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  • Schulte RF, Lange T, Beck J, Meier D, Boesiger P. Improved two-dimensional J-resolved spectroscopy. NMR Biomed. 2006;19(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci U S A. 1998;95(1):316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terpstra M, Ugurbil K, Gruetter R. Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med. 2002;47(5):1009–12.

    Article  CAS  PubMed  Google Scholar 

  • Thomas MA, Yue K, Binesh N, Davanzo P, Kumar A, Siegel B, et al. Localized two-dimensional shift correlated MR spectroscopy of human brain. Magn Reson Med. 2001;46(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992;59(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  • Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  • Waddell KW, Avison MJ, Joers JM, Gore JC. A practical guide to robust detection of GABA in human brain by J-difference spectroscopy at 3 T using a standard volume coil. Magn Reson Imaging. 2007;25(7):1032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC. A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn Reson Med [Internet]. 2011;65(1):1–12. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.22579.

    Article  CAS  Google Scholar 

  • Zierhut ML, Ozturk-Isik E, Chen AP, Park I, Vigneron DB, Nelson SJ. 1 H spectroscopic imaging of human brain at 3 Tesla: Comparison of fast three-dimensional magnetic resonance spectroscopic imaging techniques. J Magn Reson Imaging [Internet]. 2009;30(3):473–80. https://doi.org/10.1002/jmri.21834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coello, E., Starr, T.C., Lin, A.P. (2020). Magnetic Resonance Spectroscopy Methods. In: Kubicki, M., Shenton, M. (eds) Neuroimaging in Schizophrenia . Springer, Cham. https://doi.org/10.1007/978-3-030-35206-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35206-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35205-9

  • Online ISBN: 978-3-030-35206-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics