Skip to main content

Microbial Communities and Metabolisms at Hydrocarbon Seeps

  • Chapter
  • First Online:
Marine Hydrocarbon Seeps

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

Hydrocarbon seeps are common features of all oceans and are located mainly along the continental margins (Fig. 1). Seeps are locally restricted, yet highly productive hotspots of biodiversity that experience very different environmental conditions and energy regimes than the surrounding deep-sea sediments. Hydrocarbon seep ecosystems are mostly fueled by methane. Occasionally, seeps are found that emit the short-chain hydrocarbons ethane, propane or butane, and even oil and asphalt seeps have been described. Seep ecosystems therefore comprise ecological niches and microbial clades that are distinct from those found in deep-sea sediments, which are not fuelled by methane and other hydrocarbons. This chapter provides an overview of the communities thriving at marine hydrocarbon seeps and the microbial metabolisms that create these oases of life (with references to other chapters in this book). It highlights the current knowledge of the diversity and biogeography of seep microbial communities and presents possible mechanisms governing their community assembly.

Map of seafloor regions with investigated marine hydrocarbon seepage (orange dots). The map shows a selection of well-known seep areas. The total number of seeps worldwide is unknown, but estimated to be at least several ten thousand. The map was created using GeoMapApp

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–2425

    Article  Google Scholar 

  • Adams M, Hoarfrost A, Bose A, Joye S, Girguis P (2013) Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front Microbiol 4:110

    Article  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  Google Scholar 

  • Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6:1018–1031

    Article  Google Scholar 

  • Blazejak A, Erséus C, Amann R, Dubilier N (2005) Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru Margin. Appl Environ Microbiol 71:1553–1561

    Article  Google Scholar 

  • Blumenberg M, Seifert R, Michaelis W (2007) Aerobic methanotrophy in the oxic-anoxic transition zone of the Black Sea water column. Org Geochem 38:84–91

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci 6:725–734

    Article  Google Scholar 

  • Bose A, Rogers D, Adams M, Joye S, Girguis P (2013) Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments. Front Microbiol 4:386

    Article  Google Scholar 

  • Campbell B, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    Article  Google Scholar 

  • Chevalier N, Bouloubassi I, Birgel D, Taphanel MH, López-García P (2013) Microbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and lipid biomarker investigation. Geobiology 11:55–71

    Article  Google Scholar 

  • Cho H, Hyun J-H, You O-R, Kim M, Kim S-H, Choi D-L et al (2017) Microbial community structure associated with biogeochemical processes in the sulfate–methane transition zone (SMTZ) of gas-hydrate-bearing sediment of the Ulleung Basin, East Sea. Geomicrobiol J 34:207–219

    Article  Google Scholar 

  • Cordes EE, Arthur MA, Shea K, Arvidson RS, Fisher CR (2005) Modeling the mutualistic interactions between tubeworms and microbial consortia. PLoS Biol 3:e77

    Article  Google Scholar 

  • Costa RB, Okada DY, Martins TH, Foresti E (2017) Aerobic methanotrophs grew under anoxic conditions and supported a diverse heterotrophic bacterial community. Environ Eng Sci 35:804–814

    Article  Google Scholar 

  • Cui H, Su X, Chen F, Wei S, Chen S, Wang J (2016) Vertical distribution of archaeal communities in cold seep sediments from the Jiulong methane reef area in the South China Sea. Biosci J 32:4

    Google Scholar 

  • Decker C, Olu K, Cunha RL, Arnaud-Haond S (2013) Phylogeny and diversification patterns among vesicomyid bivalves. PLoS ONE 7:e33359

    Article  Google Scholar 

  • Dowell F, Cardman Z, Dasarathy S, Kellermann M, Lipp JS, Ruff SE, Biddle JF, McKay LJ, MacGregor BJ, Lloyd KG, Albert DB, Mendlovitz H, Hinrichs KU, Teske A (2016) Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin. Front Microbiol 7:17

    Article  Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    Article  Google Scholar 

  • Dubinina G, Grabovich M, Leshcheva N, Rainey FA, Gavrish E (2011) Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 61:110–117

    Article  Google Scholar 

  • Duperron S, Halary S, Lorion J, Sibuet M, Gaill F (2008) Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 10:433–445

    Article  Google Scholar 

  • Duperron S, Guezi H, Gaudron SM, Pop Ristova P, Wenzhöfer F, Boetius A (2011) Relative abundances of methane- and sulphur-oxidising symbionts in the gills of a cold seep mussel and link to their potential energy sources. Geobiology 9:481–491

    Article  Google Scholar 

  • Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MSM, Röckmann T et al (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283

    Article  Google Scholar 

  • Elvert M, Hopmans EC, Treude T, Boetius A, Suess E (2005) Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  Google Scholar 

  • Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113:12792–12796

    Article  Google Scholar 

  • Felden J, Lichtschlag A, Wenzhöfer F, de Beer D, Feseker T, Pop Ristova P et al (2013) Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan). Biogeosciences 10:3269–3283

    Article  Google Scholar 

  • Felden J, Ruff SE, Ertefai T, Inagaki F, Hinrichs K-U, Wenzhöfer F (2014) Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. Geobiology 12:183–199

    Article  Google Scholar 

  • Felden J, Wenzhöfer F, Feseker T, Boetius A (2010) Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV). Limnol Oceanogr 55:2366–2380

    Article  Google Scholar 

  • Foucher J-P, Dupré S, Scalabrin C, Feseker T, Harmegnies F, Nouzé H (2010) Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Marine Lett 30:157–167

    Article  Google Scholar 

  • Girnth AC, Grünke S, Lichtschlag A, Felden J, Knittel K, Wenzhofer F et al (2011) A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Environ Microbiol 13:495–505

    Article  Google Scholar 

  • Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35:165–174

    Article  Google Scholar 

  • Grünke S, Felden J, Lichtschlag A, Girnth A-C, De Beer D, Wenzhöfer F, Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9:330–348

    Article  Google Scholar 

  • Grünke S, Lichtschlag A, de Beer D, Felden J, Salman V, Ramette A et al (2012) Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9:2947–2960

    Article  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  Google Scholar 

  • Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499

    Article  Google Scholar 

  • Hayashi T, Obata H, Gamo T, Sano Y, Naganuma T (2007) Distribution and phylogenetic characteristics of the genes encoding enzymes relevant to methane oxidation in oxygen minimum zones of the Eastern Pacific Ocean. Res J Environ Sci 1:275–284

    Article  Google Scholar 

  • Hilário A, Capa M, Dahlgren TG, Halanych KM, Little CTS, Thornhill DJ et al (2011) New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS ONE 6:e16309

    Article  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  Google Scholar 

  • Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs K-U, Teske A, Boetius A (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956

    Article  Google Scholar 

  • Hu B, Shen L, Lian X, Zhu Q, Liu S, Huang Q et al (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111:4495–4500

    Article  Google Scholar 

  • Inagaki F, Takai K, Nealson KH, Horikoshi K (2004a) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482

    Article  Google Scholar 

  • Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K et al (2004b) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455

    Article  Google Scholar 

  • Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895

    Article  Google Scholar 

  • Janssen PH, Liesack W, Schink B (2002) Geovibrio thiophilus sp. nov., a novel sulfur-reducing bacterium belonging to the phylum Deferribacteres. Int J Syst Evol Microbiol 52:1341–1347

    Google Scholar 

  • Jones DS, Flood BE, Bailey JV (2015) Metatranscriptomic analysis of diminutive thiomargarita-like bacteria (“Candidatus Thiopilula” spp.) from abyssal cold seeps of the Barbados Accretionary Prism. Appl Environ Microbiol 81:3142–3156

    Article  Google Scholar 

  • Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238

    Article  Google Scholar 

  • Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and Archaea. Biosci Biotechnol Biochem 70:10–21

    Article  Google Scholar 

  • Kirkegaard RH, Dueholm MS, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH (2016) Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters. ISME J 10:2352–2364

    Article  Google Scholar 

  • Kleindienst S, Ramette A, Amann R, Knittel K (2012) Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments. Environ Microbiol 14:2689–2710

    Article  Google Scholar 

  • Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044

    Article  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O et al (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294

    Article  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  Google Scholar 

  • Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B et al (2016) Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol 18:3073–3091

    Article  Google Scholar 

  • Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V et al (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401

    Article  Google Scholar 

  • Lazar CS, L’Haridon S, Pignet P, Toffin L (2011) Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli Mud Volcano. Appl Environ Microbiol 77:3120–3131

    Article  Google Scholar 

  • Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and marine biology: an annual review. Taylor & Francis, Boca Raton, pp 1–46

    Google Scholar 

  • Li M, Jain S, Baker BJ, Taylor C, Dick GJ (2013) Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. Environ Microbiol 16:60–71

    Article  Google Scholar 

  • Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS One 5:e8738

    Article  Google Scholar 

  • Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230

    Article  Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  Google Scholar 

  • Marlow JJ, Steele JA, Case DH, Connon SA, Levin LA, Orphan VJ (2014) Microbial abundance and diversity patterns associated with sediments and carbonates from the methane seep environments of Hydrate Ridge, OR. Front Mar Sci 1:44

    Article  Google Scholar 

  • Martinez-Cruz K, Leewis M-C, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB (2017) Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 607–608:23–31

    Article  Google Scholar 

  • Mastalerz V, de Lange GJ, Dählmann A (2009) Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan. Geochim Cosmochim Acta 73:3849–3863

    Article  Google Scholar 

  • Merkel AY, Huber JA, Chernyh NA, Bonch-Osmolovskaya EA, Lebedinsky AV (2012) Detection of putatively thermophilic anaerobic methanotrophs in diffuse hydrothermal Vent fluids. Appl Environ Microbiol 79:915–923

    Article  Google Scholar 

  • Meyer S, Wegener G, Lloyd KG, Teske A, Boetius A, Ramette A (2013) Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 4:207

    Google Scholar 

  • Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12:422–439

    Article  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247

    Article  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458

    Article  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Article  Google Scholar 

  • Niemann H, Elvert M, Hovland M, Orcutt B, Judd A, Suck I et al (2005) Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 2:335–351

    Article  Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K et al (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  Google Scholar 

  • Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Røy H et al (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren Mud Volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74:3198–3215

    Article  Google Scholar 

  • Oni OE, Friedrich MW (2017) Metal oxide reduction linked to anaerobic methane oxidation. Trends Microbiol 25:88–90

    Article  Google Scholar 

  • Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281

    Article  Google Scholar 

  • Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP et al (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    Article  Google Scholar 

  • Oshkin IY, Wegner C-E, Lüke C, Glagolev MV, Filippov IV, Pimenov NV et al (2014) Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian Rivers. Appl Environ Microbiol 80:5944–5954

    Article  Google Scholar 

  • Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444

    Article  Google Scholar 

  • Paul BG, Ding H, Bagby SC, Kellermann MY, Redmond MC, Andersen GL, Valentine DL (2017) Methane-oxidizing bacteria shunt carbon to microbial mats at a marine hydrocarbon seep. Front Microbiol 8:186

    Article  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057

    Article  Google Scholar 

  • Petersen JM, Dubilier N (2009) Methanotrophic symbioses in marine invertebrates. Environ Microbiol Rep 1:319–335

    Article  Google Scholar 

  • Portillo MC, Leff JW, Lauber CL, Fierer N (2013) Cell size distributions of soil bacterial and archaeal taxa. Appl Environ Microbiol 79:7610–7617

    Article  Google Scholar 

  • Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1:341–353

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395

    Article  Google Scholar 

  • Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412–6422

    Article  Google Scholar 

  • Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP et al (2011) New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 78:233–243

    Article  Google Scholar 

  • Roslev P, King GM (1995) Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol 61:1563–1570

    Article  Google Scholar 

  • Roslev P, King GM (1994) Survival and recovery of methanotrophic bacteria starved under oxic and anoxic conditions. Appl Environ Microbiol 60:2602–2608

    Article  Google Scholar 

  • Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs K-U (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184

    Article  Google Scholar 

  • Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H et al (2017) Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nat Microbiol 2:17093

    Article  Google Scholar 

  • Ruff SE, Arnds J, Knittel K, Amann R, Wegener G, Ramette A, Boetius A (2013) Microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLoS ONE 8:e72627

    Article  Google Scholar 

  • Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci U S A 112:4015–4020

    Article  Google Scholar 

  • Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K, Ramette A, Boetius A (2019) In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J 13:197–213

    Article  Google Scholar 

  • Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE (2017) Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations. Environ Microbiol 19:4866–4881

    Article  Google Scholar 

  • Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340

    Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  Google Scholar 

  • Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VJ (2014) Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci U S A 111:E4139–E4147

    Article  Google Scholar 

  • Sommer S, Linke P, Pfannkuche O, Schleicher T, Schneider von Deimling J, Reitz A et al (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Prog Ser 382:69–86

    Article  Google Scholar 

  • Sommer S, Linke P, Pfannkuche O, Niemann H, Treude T (2010) Benthic respiration in a seep habitat dominated by dense beds of ampharetid polychaetes at the Hikurangi Margin (New Zealand). Mar Geol 272:223–232

    Article  Google Scholar 

  • Stagars MH, Ruff SE, Amann R, Knittel K (2016) High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl) succinate synthase genes. Front Microbiol 6:1511

    Article  Google Scholar 

  • Tavormina PL, Ussler W, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American Margin. Appl Environ Microbiol 74:3985–3995

    Article  Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Article  Google Scholar 

  • Thurber AR, Levin LA, Rowden AA, Sommer S, Linke P, Kröger K (2013) Microbes, macrofauna, and methane: a novel seep community fueled by aerobic methanotrophy. Limnol Oceanogr 58:1640–1656

    Article  Google Scholar 

  • Trembath-Reichert E, Case DH, Orphan VJ (2016) Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ 4:e1913

    Article  Google Scholar 

  • Vigneron A, Cruaud P, Pignet P, Caprais J-C, Cambon-Bonavita M-A, Godfroy A, Toffin L (2013) Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J 7:1595–1608

    Article  Google Scholar 

  • Vigneron A, Cruaud P, Roussel EG, Pignet P, Caprais J-C, Callac N et al (2014) Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin. PLoS One 9:e104427

    Article  Google Scholar 

  • Vigneron A, Bishop A, Alsop EB, Hull K, Rhodes I, Hendricks R et al (2017) Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvania Region. Front Microbiol 8:593

    Article  Google Scholar 

  • Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–2740

    Article  Google Scholar 

  • Wasmund K, Kurtböke DI, Burns KA, Bourne DG (2009) Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity. FEMS Microbiol Ecol 68:142–151

    Article  Google Scholar 

  • Weber HS, Habicht KS, Thamdrup B (2017) Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment. Front Microbiol 8:619

    Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  Google Scholar 

  • Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008) Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea). Biogeosciences 5:1127–1144

    Article  Google Scholar 

  • Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K (2016) Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front Microbiol 7:46

    Article  Google Scholar 

  • Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R et al (2018) Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep 8:1291

    Article  Google Scholar 

  • Yan T, Ye Q, Zhou J, Zhang CL (2006) Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. FEMS Microbiol Ecol 57:251–259

    Article  Google Scholar 

  • Yanagawa K, Sunamura M, Lever MA, Morono Y, Hiruta A, Ishizaki O et al (2011) Niche separation of methanotrophic archaea (ANME-1 and -2) in methane-seep sediments of the Eastern Japan Sea Offshore Joetsu. Geomicrobiol J 28:118–129

    Article  Google Scholar 

  • Yoshinaga MY, Lazar CS, Elvert M, Lin Y-S, Zhu C, Heuer VB et al (2015) Possible roles of uncultured archaea in carbon cycling in methane-seep sediments. Geochim Cosmochim Acta 164:35–52

    Article  Google Scholar 

  • Zhang Y, Su X, Chen F, Jiao L, Jiang H, Dong H, Ding G (2012) Abundance and diversity of candidate division JS1- and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Front Earth Sci 6:373–382

    Article  Google Scholar 

  • Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu J-D, Li M (2019) Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan Thermoprofundales (MBG-D archaea). ISME J 13:885–901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Emil Ruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emil Ruff, S. (2020). Microbial Communities and Metabolisms at Hydrocarbon Seeps. In: Teske, A., Carvalho, V. (eds) Marine Hydrocarbon Seeps. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-030-34827-4_1

Download citation

Publish with us

Policies and ethics