Skip to main content

Spin Labeling

  • Chapter
  • First Online:
Nitroxides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 292))

Abstract

A number of problems concerning the structure and dynamics of complex molecular systems including examples from biology can be solved by a modification of a chosen portion of the object of interest by a physical label such as a stable radical, paramagnetic complex, luminophore, or Moessbauer atom followed by monitoring the label’s properties by appropriate physical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.J. Stone, T. Buckman, P.L. Nordio, H.M. McConnell, Spin-labeled biomolecules. Proc. Natl. Acad. Sci. 54, 1010–1017 (1965)

    Google Scholar 

  2. E. Fremi, Ann. Chim. Phys. Ser. 3 15, 408–488 (1845)

    Google Scholar 

  3. M.B. Neiman, É.G. Rozantzev, Y.G. Mamedova, Free radical reactions involving no unpaired electrons. Nature 196, 472 (1962)

    Article  ADS  Google Scholar 

  4. G.I. Likhtenshtein, Determination of the topography of proteins groups using specific paramagnetic labels. Mol. Biol. (Moscow) 2, 234–240 (1968)

    Google Scholar 

  5. G.I. Likhtenshtein, Spin Labeling Method in Molecular Biology (Wiley, New York, 1976)

    Google Scholar 

  6. J.C. Taylor, J.S. Leigh, M. Cohn, The effect of dipole–dipole interaction between nitroxide radical and a paramagnetic ion on the line shape of the ESR spectra of radical. Proc. Natl. Acad. Sci. USA 64, 219–206 (1969)

    Google Scholar 

  7. G.I. Likhtenshtein, Study on the proteins microstructure by method of spin-label paramagnetic probe. Mol. Biol. (Moscow) 4, 782–789 (1970)

    Google Scholar 

  8. A.I. Kulikov, G.I. Likhtenshtein, E.G. Rozantzev, V. Suskina, A.V. Shapiro, Nitroxide bi- and polyradicals as standard models for distance estimation between the nitroxide moities. Biofizika 17, 42–49 (1972)

    Google Scholar 

  9. A.I. Kokorin, K.I. Zamaraev, G.L. Grigoryan, V.P. Ivanov, E.G. Rozantsev, Distance estimation between nitroxyl radicals. Biofizika 17, 34–41 (1972)

    Google Scholar 

  10. A.V. Kulikov, G.I. Likhtenstein, Application of saturation curves for evaluating distances in biological objects by the method of double spin-labels. Biofisika 19, 420–424 (1974)

    Google Scholar 

  11. G.I. Likhtenshtein, Depth of immersion of paramagnetic centers, in Magnetic Resonance in Biology, ed. by L. Berliner, S. Eaton, G. Eaton (Kluwer Academic Publishers, Dordrecht, 2000), pp. 1–36

    Google Scholar 

  12. G.D. Case, J.S. Leigh Jr., Intramitochondrial position of cytochrome haem groups determined by dipolar interaction with paramagnetic cations. Biochem. J. 160, 769–783 (1976)

    Google Scholar 

  13. A.V. Kulikov, G.I. Likhtenshtein, The use of spin-relaxation phenomena in the investigation of the structure of model and biological systems by method of spin labels. Adv. Mol. Relax. Interact. Process. 10, 47–78 (1977)

    Google Scholar 

  14. G.I. Likhtenshtein, Electron Spin in Chemistry and Biology: Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation (Springer, 1976)

    Google Scholar 

  15. O. Krumkacheva, E. Bagryanskaya, EPR-based distance measurements at ambient temperature. J. Magn. Reson. 280, 117–126 (2017)

    Article  ADS  Google Scholar 

  16. L.A. Syrtsova, L.A. Levchenko, E.N. Frolov, G.I. Likhtenshtein, N.N. Pisarscaya, L.V. Vorob’ev, V.A. Gromoglasova, Structure and function of the nitrogenase components from Azotobacter vinelandii. Mol. Biol. (Moscow) 6, 62 (1972)

    Google Scholar 

  17. E.N. Frolov, G.I. Likhtenshtein, L.A. Syrtsova, Study of nonheme iron proteins. Dokl. A.N. SSSR 196, 1149 (1971)

    Google Scholar 

  18. A.D. Milov, R.I. Samoilova, Y.D. Tsvetkov, M. De Zotti, C. Toniolo, J. Raap, PELDOR conformational analysis of bis-labeled Alamethicin aggregated in phospholipid vesicles. J. Phys. Chem. B 112, 13469–13472 (2008)

    Article  Google Scholar 

  19. G. Jeschke, DEER distance measurements on proteins. Annu. Rev. Phys. Chem. 63, 419–446 (2012)

    Article  ADS  Google Scholar 

  20. J.H. Freed, New technologies in electron spin resonance. Annu. Rev. Phys. Chem. 51, 655–689 (2000)

    Article  ADS  Google Scholar 

  21. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, 2010)

    Google Scholar 

  22. A.V. Kulikov, Determination of distance between the nitroxide label and a paramagnetic center in spin-labeled proteins from the parameters of the saturation curve of the ESR spectrum of the label at 77K. Mol. Biol. (Moscow) 10, 109–116 (1976)

    Google Scholar 

  23. C.L. Motion, J.E. Lovett, S. Bell, S.L. Cassidy, P.A.S. Cruickshank, D.R. Bolton, R.I. Hunter, H. El Mkami, S. Van Doorslaer, G.M. Smith, DEER sensitivity between iron centers and nitroxides in heme-containing proteins improves dramatically using broadband, high-field EPR. J. Phys. Chem. Lett. 7, 1411–1415 (2016)

    Google Scholar 

  24. B. Selmke, P.P. Borbat, C. Nickolaus, R. Varadarajan, J.H. Freed, W.E. Trommer, Open and closed form of maltose binding protein in its native and molten globule state as studied by electron paramagnetic resonance spectroscopy. Biochemistry 57(38), 5507–5512 (2018)

    Google Scholar 

  25. A.L. Lai, E.M. Clerico, M.E. Blackburn, N.A. Patel, C.V. Robinson, P.P. Borbat, J.H. Freed, L.V. Gierasch, Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. J. Biol. Chem. 292(21), 8773–8785 (2017)

    Article  Google Scholar 

  26. M.V. Airola, D. Huh, N. Sukomon, J. Widom, R. Sircar, P.P. Borbat, J.H. Freed, K.J. Watts, B.R. Crane, Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J. Mol. Biol. 425(5), 886–901 (2013)

    Article  Google Scholar 

  27. G.T. Merz, P.P. Borbat, A.R. Muok, M. Srivastava, D.N. Bunck, J.H. Freed, B.R. Crane, Site-specific incorporation of a Cu2+ spin label into proteins for measuring distances by pulsed dipolar electron spin resonance spectroscopy. J. Phys. Chem. B 122(41), 9443–9451 (2018)

    Article  Google Scholar 

  28. B.J. Wylie, B.G. Dzikovski, S. Pawsey, M. Caporini, M. Rosay, J.H. Freed, A.E. McDermott, Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces. J. Biomol. NMR 61(3–4), 361–367 (2015)

    Article  Google Scholar 

  29. Y. Yang, F. Yang, Y.-J. Gong, T. Bahrenberg, A. Feintuch, X.-C. Su, D. Goldfarb, High sensitivity in-cell epr distance measurements on proteins using an optimized Gd(III) spin label. J. Phys. Chem. Lett. 9, 6119–6123 (2018)

    Google Scholar 

  30. S. Dunkel, L.P. Pulagam, H.-J. Steinhoff, J.P. Klare, In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. Phys. Chem. Chem. Phys. 17(7), 4875–4878 (2015)

    Google Scholar 

  31. L.G.M. Basso, L.F.S. Mendes, A.J. Costa-Filho, The two sides of a lipid–protein story. Biophys. Rev. 8, 179–191 (2016)

    Article  Google Scholar 

  32. R.D. Nielsen, K. Che, M.H. Gelb, B.H. Robinson, A ruler for determining the position of proteins in membranes. J. Am. Chem. Soc. 127, 6430–6442 (2005)

    Article  Google Scholar 

  33. D. Snead, A.L. Lai, R.T. Wragg, D.A. Parisotto, T.F. Ramlall, J.S. Dittman, J.H. Freed, D. Eliezer, Unique structural features of membrane-bound C-terminal domain motifs modulate complexin inhibitory function. Front. Mol. Neurosci. 10, 1–17 (2017)

    Google Scholar 

  34. R.S. Cooper, E.R. Georgieva, P.P. Borbat, J.H. Freed, E.E. Heldwein, Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat. Struct. Mol. Biol. 25, 416–424 (2018)

    Article  Google Scholar 

  35. A.L. Lai, J.H. Freed, HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophys. J. 106(1), 172–181 (2014)

    Google Scholar 

  36. P. Lueders, H. Jäger, M.A. Hemminga, G. Jeschke, M. Yulikov, Distance measurements on orthogonally spin-labeled membrane spanning WALP23 polypeptides. J. Phys. Chem. B 117, 2061–2068 (2013)

    Google Scholar 

  37. T.F. Segawa, M. Doppelbauer, L. Garbuio, A. Doll, Y.O. Polyhach, G. Jeschke, Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods. J. Chem. Phys. 144(19), 194201/1–194201/12 (2016)

    Google Scholar 

  38. I.D. Sahu, G.A. Lorigan, Site-directed spin labeling EPR for studying membrane proteins. Biomed. Res. Int. 2018, 3248289 (2018)

    Article  Google Scholar 

  39. E.R. Georgieva, Nanoscale lipid membrane mimetics in spin-labeling and electron paramagnetic resonance spectroscopy studies of protein structure and function. Nanotechnol. Rev. 6(1) (2016). https://doi.org/10.1515/ntrev-2016-0080

  40. D. Marsh, T. Pali, The protein–lipid interface: perspectives from magnetic resonance and crystal structures. Biochim. Biophys. Acta: Biomembr. 1666(1–2), 118–141 (2004)

    Google Scholar 

  41. M.A. Hemminga, L.J. Berliner, ESR spectroscopy in membrane biophysics (Springer, New York, 2007)

    Google Scholar 

  42. E.S. Karp, J.J. Inbaraj, M.L. Laryukhin, G.A. Lorigan, Electron paramagnetic resonance studies of an integral membrane peptide inserted into aligned phospholipid bilayer nanotube arrays. J. Am. Chem. Soc. 128, 12070–12071 (2006)

    Google Scholar 

  43. A.N. Smith, U.T. Twahir, T. Dubroca, G.E. Fanucci, J.R. Long, Molecular rationale for improved dynamic nuclear polarization of biomembranes. J. Phys. Chem. B 120, 7880–7888 (2016)

    Google Scholar 

  44. S.Y. Liao, M. Lee, T. Wang, I.V. Sergeyev, M. Hong, Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. J. Biomol. NMR 64, 223–237 (2016)

    Article  Google Scholar 

  45. L.G. Mansor Basso, L.F. Santos Mendes, A.J. Costa-Filho, The two sides of a lipid–protein story. Biophys, Rev 8, 179–191 (2016)

    Google Scholar 

  46. J.M. Franck, S. Chandrasekaran, B. Dzikovski, C.R. Dunnam, J.H. Freed, Focus: two-dimensional electron–electron double resonance and motions: the challenge of higher frequencies. J. Chem. Phys. 142, 212302 (2015). (Review)

    Article  ADS  Google Scholar 

  47. S.Th. Sigurdsson, Nitroxides and nucleic acids: chemistry and electron paramagnetic resonance (EPR) spectroscopy. Pure Appl. Chem. 83, 677–686 (2011)

    Article  Google Scholar 

  48. Y. Sun, P.P. Borbat, V.M. Grigoryants, W.K. Myers, J.H. Freed, C.P. Scholes, Pulse dipolar ESR of doubly labeled mini TAR DNA and its annealing to mini TAR RNA. Biophys. J. 108, 893–902 (2015)

    Google Scholar 

  49. G.W. Reginsson, O. Schiemann, Spin labeling of DNA and RNA, in Encyclopedia of Biophysics, ed. by G.C.K. Roberts (Springer, Berlin, Heidelberg, 2013)

    Google Scholar 

  50. G. Masliah, C. Maris, L.B. König, M. Yulikov, F. Aeschimann, A.L. Malinows, J. Mabille, J. Weiler, A. Holla, J. Hunziker, N. Meisner‐Kober, B. Schuler, G. Jeschk, F. H-T Allain, Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains. EMBO J. 37(6) (2018)

    Google Scholar 

  51. E.S. Babaylova, A.A. Malygin, A.A. Lomzov, D.V. Pyshnyi, M. Yulikov, G. Jeschke, O.A. Krumkacheva, M.V. Fedin, E.G. Bagryanskaya, Complementary-addressed site-directed spin labeling of long natural RNAs. Nucleic Acids Res. 44(16), 7935–7943 (2016)

    Article  Google Scholar 

  52. O. Duss, M. Yulikov, F.H.T. Allain, G. Jeschke, Combining NMR and EPR to determine structures of large RNAs and protein–RNA complexes in solution. Methods Enzymol. 558(Structures of Large RNA Molecules and Their Complexes), 279–331 (2015)

    Google Scholar 

  53. J.M. Esquiaqui, E.M. Sherman, J.D. Ye, G.E. Fanucci, Conformational flexibility and dynamics of the internal loop and helical regions of the kink-turn motif in the glycine riboswitch by site-directed spin-labeling. Biochemistry 55(31), 4295–305 (2016)

    Google Scholar 

  54. G.I. Likhtenshtein, Electron Spin in Chemistry and Biology: Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation (Springer, 2016)

    Google Scholar 

  55. V.V. Khramtsov, In vivo molecular electron paramagnetic resonance-based spectroscopy and imaging of tumor microenvironment and redox using functional paramagnetic probes. Antioxid. Redox Signal. 28, 1365–1377 (2018)

    Google Scholar 

  56. D.J. Lurie, M.A. Foster, D. Yeung, J.M.S. Hutchison, Design, construction and use of a large-sample field-cycled PEDRI imager. Phys. Med. Biol. 43, 1877–1886 (1998)

    Google Scholar 

  57. V.V. Khramtsov, G.L. Caia, K. Shet, E. Kesselring, S. Petryakov, J.L. Zweier, A. Samouilov, Variable field proton–electron double-resonance imaging: application to pH mapping of aqueous samples. J. Magn. Reson. 202, 267–273 (2010)

    Article  ADS  Google Scholar 

  58. G. Ilangovan, J.L.Zweier, P. Kuppusamy, Microximetry: simultaneous determination of oxygen consumption and free radical production using electron paramagnetic resonance spectroscopy. Methods Enzymol. 381(Oxygen Sensing), 747–762 (2004)

    Google Scholar 

  59. H. Swartz, Seeing is believing—visualizing drug delivery in vitro and in vivo. Adv. Drug Deliv. Rev. 57, 1085–1086 (2005)

    Article  Google Scholar 

  60. W.K. Subczynski, J.S. Hyde, The diffusion-concentration product of oxygen in lipid bilayers using the spin-label T1 method. Biochim. Bioph. Acta 43, 283–291 (1986)

    Google Scholar 

  61. W.K. Subczynski, L. Mainali, T.G. Camenisch, W. Froncisz, J.S. Hyde, Spin-label oximetry at Q- and W-band. J. Magn. Reson. 209, 142–148 (2011)

    Article  ADS  Google Scholar 

  62. G.I. Likhtenshtein, Yu.D. Akhmedov, L.V. Ivanov, L.A. Krinitskaya, Yu.V. Kokhanov, Investigation of the lysozyme macromolecule by a spin-labeling method. Mol. Biol. (Moscow) 8, 40–48 (1974)

    Google Scholar 

  63. E.I. Yudanova, A.V. Kulikov, Determination of spin-exchange frequency of nitroxide radicals and oxygen by continuous saturation of ESR spectra. Biofizika 29, 925–929 (1984)

    Google Scholar 

  64. V.V. Khramtsov, L.M. Weiner, I.A. Grigor’ev, L.B. Volodarsky, Proton exchange in stable nitroxyl radicals. ESR study of the pH of aqueous solutions. Chem. Phys. Lett. 91, 69–72 (1982)

    Google Scholar 

  65. I.A. Grigor’ev, A. Samouilov, V.V. Khramtsov, In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. Magn. Reson. Med. 67, 1827–1836 (2012)

    Google Scholar 

  66. V.V. Khramtsov, In vivo spectroscopy and imaging of nitroxide probes, in Nitroxides: Theory, Experiment and Applications, ed. by A.I. Kokorin (2012), pp. 317–346

    Google Scholar 

  67. I.A. Kirilyuk, A.A. Bobko, V.V. Khramtsov, I.A. Grigor’ev, Nitroxides with two pK values—useful spin probes for pH monitoring within a broad range. Org. Biomol. Chem. 3, 1269–1274 (2005)

    Google Scholar 

  68. L.B. Volodarsky (ed.), Imidazolin Radicals (CRC Press, Bosa Raton, 1988)

    Google Scholar 

  69. D. Meisel, G. Czapski, One-electron transfer equilibriums and redox potentials of radicals studied by pulse radiolysis. J. Phys. Chem. 79, 1503–1509 (1975)

    Article  Google Scholar 

  70. G.I. Likhtenshtein, Biophysical Labeling Methods in Molecular Biology (Cambridge University Press, Cambridge, New York, 1993)

    Google Scholar 

  71. A.P. Jagtap, I. Krstic, N.C. Kunjir, R. Hänsel, T.F. Prisner, S.T. Sigurdsson, Sterically shielded spin labels for in-cell EPR spectroscopy: analysis of stability in reducing environment. Free Radic. Res. 49(1), 78–85 (2015)

    Google Scholar 

  72. N. Kocherginsky, H.M. Swarts, Nitroxide Spin Labels. Reactions in Biology and Chemistry (CRC Press, 1995)

    Google Scholar 

  73. L.B. Volodarsky, I.A. Grigor’ev, S.A. Dikanov, V.A. Reznikov, Imidazoline Nitroxide Radicals (Nauka (Siberian Branch), Novosibirsk, 1988), pp. 188–193)

    Google Scholar 

  74. V.V. Khramtsov, V.I. Yelinova (Popova), L.M. Weiner, T.A. Berezina, V.V. Martin, L.B. Volodarsky, Quantitative determination of SH groups in low- and high-molecular-weight compounds by an electron spin resonance method. Anal. Biochem. 182, 58–63 (1989)

    Google Scholar 

  75. L. Ya, L. Gendel, M.A. Goldfeld, V.K. Koltover, E.G. Rozanzev, V.I. Suskina, Biofizika 13, 1114–1115 (1968)

    Google Scholar 

  76. A.A. Bobko, T.D. Eubank, J.L. Voorhees, O.V. Efimova, I.A. Kirilyuk, S. Petryakov, D.G. Trofimiov, C.B. Marsh, J.L. Zweier, I.A. Grigor’ev, A. Samouilov, V.V. Khramtsov, In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors. Magn. Reson. Med. 67, 1827–1836 (2012)

    Google Scholar 

  77. V.V. Khramtsov, A.A. Bobko, M. Tseytlin, B. Driesschaert, Exchange phenomena in the electron paramagnetic resonance spectra of the nitroxyl and trityl radicals: multifunctional spectroscopy and imaging of local chemical microenvironment. Anal. Chem. 89, 4758–4771 (2017)

    Article  Google Scholar 

  78. S. Kishimoto, M.C. Krishna,V.V., Khramtsov, H. Utsumi, D.J. Lurie, In Vivo Application of Proton-Electron Double-Resonance Imaging. ANTIOXIDANTS & REDOX SIGNALING 28, 1345–1363 (2018)

    Google Scholar 

  79. D.J. Lurie, J.M. Hutchison, L.N. Bell, I. Nicholson, D.M. Bussell, J.R. Mallard, Field-cycled proton-electron double resonance imaging of free radicals in large aqueous samples. J. Magn. Reson. 84, 431–437 (1989)

    Google Scholar 

  80. H. Utsumi, K-I. Yamada, K. Ichikawa, K. Sakai, Y. Kinoshita, S. Matsumoto, M. Nagai, Simultaneous molecular imaging of redox reactions monitored by Overhauser enhanced MRI with 14N- and 15N-labeled nitroxyl radicals. Proc. Natl. Acad. Sci. USA 103, 1463–1468 (2006)

    Google Scholar 

  81. A. Samouilov, O.V. Efimova, A.A. Bobko, Z. Sun, S. Petryakov, T.B. Eubank, D.G. Trofimov, I.A. Kirilyuk, I.A. Grigor’ev, W. Takahashi, I.L. Zweier, V.V. Khramtsov, In vivo proton–electron double-resonance imaging of extracellular tumor pH using an advanced nitroxide probe. Anal. Chem. 86, 1045–1052 (2014)

    Google Scholar 

  82. F. Hyodo, S. Ito, K. Yasukawa, R. Kobayashi, H. Utsumi, Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging. Anal. Chem. 86, 7234–7238 (2014)

    Article  Google Scholar 

  83. H. Eto, F. Hyodo, N. Kosem, R. Kobayashi, K. Yasukawa, M. Nakao, M. Kiniwa, H. Utsumi, Redox imaging of skeletal muscle using in vivo DNP-MRI and its application to an animal model of local inflammation. Free Radic. Biol. Med. 89, 1097–1104 (2015)

    Google Scholar 

  84. G.I. Likhtenshtein, A.P. Pivovarov, P.Kh. Bobodzhanov, E.G. Rozantsev, N.B. Smolina, Biofizika 13, 396–400 (1968)

    Google Scholar 

  85. G.I. Likhtenshtein, Yu.B. Grebenshchikov, T.V. Avilova, Mol. Biol. (Moscow) 6, 52–60 (1972)

    Google Scholar 

  86. D. Kivelson, Theory of EPR [electron paramagnetic resonance] line widths of free radicals. J. Chem. Phys. 33, 1094–1106 (1960)

    Article  ADS  Google Scholar 

  87. J.H. Freed, Theory of the ESR spectra of nitroxides, in Spin Labeling. Theory and Applications, vol. 1, ed. by L. Berliner (Academic Press, New York, 1976)

    Google Scholar 

  88. L.I. Antsiferova, O.V. Belonogova, V.V. Kochetkov, G.I. Likhtenshtein, Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya 494–501 (1989)

    Google Scholar 

  89. M.A. Voinov, D.B. Good, M.E. Ward, S. Milikisiyants, A. Marek, M.A. Caporini, M. Rosay, R.A. Munro, M. Ljumovic, L.S. Brown, V. Ladizhansky, A.I. Smirnov, Cysteine-specific labeling of proteins with a nitroxide biradical for dynamic nuclear polarization NMR. J. Phys. Chem. B 119, 10180–10190 (2015)

    Article  Google Scholar 

  90. E.P. Kirilina, I.A. Grigoriev, S.A. Dzuba, Oriental motion of nitroxide in molecular glasses. J. Chem. Phys. 121, 12465–12471 (2004)

    Article  ADS  Google Scholar 

  91. M. Pavone, P. Cimino, F. De Angelis, V. Barone, J. Am. Chem. Soc. 128, 4338–4347 (2006)

    Google Scholar 

  92. H.S. Mchaourab, P.R. Steed, K. Kazmier, Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19, 1549–1561 (2011)

    Article  Google Scholar 

  93. Z. Zhang, M.R. Fleissner, D.S. Tipikin, Z. Liang, J.K. Moscicki, K.A. Earle, W.L. Hubbell, J.H. Freed, Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme. J. Phys. Chem. B 11, 5503–5521 (2010)

    Google Scholar 

  94. M.M. Haimann, Y. Akdogan, R. Philipp, R. Varadarajan, D. Hinderberger, W.E. Trommer, Conformational changes of the chaperone SecB upon binding to a model substrate—bovine pancreatic trypsin inhibitor (BPTI). Biol. Chem. 392, 849–858 (2011)

    Google Scholar 

  95. F. Tombolato, A. Ferrarin, J.H. Freed, Dynamics of the nitroxide side chain in spin-labeled proteins. J. Phys. Chem. B 110, 26248–26259 (2006)

    Article  Google Scholar 

  96. L. Yu, W. Wang, S. Ling, S. Liu, L. Xiao, Y. Xin, C. Lai, Y. Xiong, L. Zhang, C. Tian, CW-EPR studies revealed different motional properties and oligomeric states of the integrin β1a transmembrane domain in detergent micelles or liposomes. Sci Rep. 5, 7848 (2015)

    Google Scholar 

  97. Y.-W. Chiang, A.J. Costa-Filho, J.H. Freed, Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study. J. Phys. Chem. B 111, 11260–11270 (2007)

    Google Scholar 

  98. V.I. Krinichnyi, O.Ya. Grinberg, E.I. Judanova, M.L. Borin, Ya.S. Lebedev, G.I. Likhtenshtein, Study of molecular mobility in biological membranes by two millimeter band ESR spectroscopy. Biofizika 32, 59–65(1988)

    Google Scholar 

  99. D. March, Spin-label EPR for determining polarity and proticity in biomolecular assemblies: transmembrane profiles. Appl. Magn. Reson. 37, 435–454 (2010)

    Article  Google Scholar 

  100. T.I. Smirnova, T.G. Chadwick, M.A. Voinov, O. Poluektov, J. van Tol, A. Ozarowski, G. Schaaf, M.M. Ryan, V.A. Bankaitis, Local polarity and hydrogen bonding inside the Sec14p phospholipid-binding cavity. Biophys. J. 92, 3686–3695 (2007)

    Google Scholar 

  101. V.I. Krinichnyi, 2-mm Wave Band EPR Spectroscopy of Condensed Systems (CRC Press, Boca Raton, IL, 1995)

    Google Scholar 

  102. G.I. Likhtenshtein, J. Yamauchi, S. Nakatsuji, R. Smirnov, Tamura Nitroxides: Application in Chemistry, Biomedicine, and Materials Science (Wiley, Weinhem, 2008)

    Google Scholar 

  103. D. Goldfarb, Gd3+ spin labeling for measuring. distances in biomacromolecules: why and how? Methods Enzymol. 563, 416–457 (2015)

    Google Scholar 

  104. A. Feintuch, G. Otting, D. Goldfarb, Gd3+ spin labeling for measuring. distances in biomacromolecules: why and how? Methods Enzymol. 563, 416–457 (2015)

    Google Scholar 

  105. G. Prokopiou, M.D. Lee, A. Collauto, E.H. Abdelkader, T. Bahrenberg, A. Feintuch, M. Ramirez-Cohen, J. Clayton, J.D. Swarbrick, B. Graham, G. Otting, D. Goldfarb, Measurements in proteins by EPR spectroscopy. Inorg. Chem. 57(9), 5048–5059 (2018)

    Article  Google Scholar 

  106. M.C. Mahawaththa, M.D. Lee, A. Giannoulis, A. Adams, A. Feintuch, J.D. Swarbrick, B. Graham, C. Nitsche, D. Goldfarb, G. Ottgorin, Small neutral Gd(III) tags for distance measurements in proteins by double electron–electron resonance experiments. Phys.Chem.Chem. Phys. 20, 23535 (2018)

    Google Scholar 

  107. L. Gigli, W. Andrałojć, A. Dalaloyan, G. Parigi, E. Ravera, D. Goldfarb, C. Luchinat, Assessing protein conformational landscapes: integration of DEER data in maximum occurrence analysis. Phys. Chem. Chem. Phys. 20, 27429 (2018)

    Google Scholar 

  108. G. Prokopiou, M.D. Lee, A. Collauto, E.H. Abdelkader, T. Bahrenberg, A. Feintuch, M. Ramirez-Cohen, J. Clayton, J.D. Swarbrick, B. Graham, G. Otting, D. Goldfarb, Small Gd(III) tags for Gd(III)–Gd(III) distance measurements in proteins by EPR spectroscopy. Inorg. Chem. 57(9), 5048–5059 (2018)

    Google Scholar 

  109. C. Gmeiner, G. Dorn, F.H.T. Allain, G. Jeschke, M. Yulikov, Spin labelling for integrative structure modelling: a case study of the polypyrimidine-tract binding protein 1 domains in complexes with short RNAs. Phys. Chem. Chem. Phys. 19, 28360 (2017)

    Article  Google Scholar 

  110. M.K. Bowman, C. Mailer, H.J. Halpern, The solution conformation of triarylmethyl radicals. J. Magn. Reson. 172, 254 (2005)

    Article  ADS  Google Scholar 

  111. E.S. Babaylova, A.V. Ivanov, A.A. Malygin, M.A. Vorobjeva, A.G. Venyaminova, Yu.F. Polienko, I.A. Kirilyuk, O.A. Krumkacheva, M.V. Fedin, G.G. Karpova, E.G. Bagryanskaya, A versatile approach for site-directed spin labeling and structural EPR studies of RNAs. Org. Biomol. Chem. 12, 3129 (2014)

    Google Scholar 

  112. G.W. Reginsson, N.C. Kunjir, STh Sigurdsson, O. Schiemann, Trityl radicals: spin labels for nanometer-distance measurements. Chem. Eur. J. 8, 13580–13584 (2012)

    Article  Google Scholar 

  113. Z. Yang, Y. Liu, P. Borbat, J.L. Zweier, J.H. Freed, W.L. Hubbell, Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J. Am. Chem. Soc. 134, 9950–9952 (2012)

    Article  Google Scholar 

  114. G.Y. Shevelev, O.A. Krumkacheva, A.A. Lomzov, A.A. Kuzhelev, O.Y. Rogozhnikova, D.V. Trukhin, T.I. Troitskaya, V.M. Tormyshev, M. Fedin, D. Pyshnyi, E.G. Bagryanskaya, Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J. Am. Chem. Soc. 136, 9874–9877 (2014)

    Google Scholar 

  115. A.A. Kuzhelev, D.V. Trukhin, O.A. Krumkacheva, R.K. Strizhakov, O.Y. Rogozhnikova, T.I. Troitskaya, M.V. Fedin, V.M. Tormyshev, E.G. Bagryanskaya, Room-temperature electron spin relaxation of triarylmethyl radicals at the X- and Q-bands. J. Phys. Chem. B 119, 13630–13640 (2015)

    Article  Google Scholar 

  116. A.A. Kuzhelev, G.Yu. Shevelev, O.A. Krumkacheva, V.M. Tormyshev, D.V. Pyshnyi, M.V. Fedin, E.G. Bagryanskaya, Saccharides as prospective immobilizers of nucleic acids for room-temperature structural EPR studies. J. Phys. Chem. Lett. 7, 2544–2548 (2016)

    Google Scholar 

  117. A.A. Kuzhelev, R.K. Strizhakov, O.A. Krumkacheva, Y.F. Polienko, D.A. Morozov, GYu. Shevelev, D.V. Pyshnyi, I.A. Kirilyuk, M.V. Fedin, E.G. Bagryanskaya, Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group. J. Magn. Reson. 266, 1–7 (2016)

    Article  ADS  Google Scholar 

  118. P. Roser, M.J. Schmidt, M. Drescher, D. Summerer, Site-directed spin labeling of proteins for distance measurements in vitro and in cells. Org. Biomol. Chem. 14, 5468–5476 (2016)

    Article  Google Scholar 

  119. N. Alonso-Garcia, I. Garcia-Rubio, J.A. Manso, R.M. Buey, R.H. Urien, A. Sonnenberg, G. Jeschke, J.M. de Pereda, Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4. Acta Crystallogr. D: Biol. Crystallogr. 71(4), 969–985 (2015)

    Article  Google Scholar 

  120. C. Gmeiner, D. Klose, E. Mileo, V. Belle, S.R.A. Marque, G. Dorn, F.H.T. Allain, B. Guigliarelli, G. Jeschke, M. Yulikov, Orthogonal tyrosine and cysteine site-directed spin labeling for dipolar pulse EPR spectroscopy on proteins. J. Phys. Chem. Lett. 8(19), 4852–4857 (2017)

    Article  Google Scholar 

  121. E.A.W. van der Cruijsen, E.J. Koers, C. Sauvee, R.E. Hulse, M. Weingarth, O. Ouari, E. Perozo, P. Tordo, M. Baldus, Biomolecular DNP-supported NMR spectroscopy using site-directed spin labeling. Chem. Eur. J. 21, 12971–12977 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Likhtenshtein, G.I. (2020). Spin Labeling. In: Nitroxides. Springer Series in Materials Science, vol 292. Springer, Cham. https://doi.org/10.1007/978-3-030-34822-9_10

Download citation

Publish with us

Policies and ethics