Skip to main content
Log in

The two sides of a lipid-protein story

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Protein–membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid–peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P (2007) Molecular biology of the cell (5th edn). Garland, New York

  • Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91:1667–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    PubMed  Google Scholar 

  • Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11:540–547

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants — diversity and environmental aspects of hydrocarbon biodegradation. Bioscience 45:332–338

    Article  Google Scholar 

  • Barroso RP, Basso LGM, Costa-Filho AJ (2015) Interactions of the antimalarial amodiaquine with lipid model membranes. Chem Phys Lipids 186:68–78

    Article  CAS  PubMed  Google Scholar 

  • Basso LGM, Rodrigues RZ, Naal RMZG, Costa-Filho AJ (2011) Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. Biochim Biophys Acta 1808(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Berliner LJ and Reuben J (1989) Biological magnetic resonance, vol 8: Spin labeling theory and applications (Berliner LJ, Reuben J, eds). Plenum, New York

  • Berliner LJ, Eaton SS, Eaton GR (2000) Distance measurements in biological systems by EPR. Plenum, New York

    Google Scholar 

  • Bjornberg O, Rowland P, Larsen S, Jensen KF (1997) Active site of dihydroorotate dehydrogenase A from Lactococcus lactis investigated by chemical modification and mutagenesis. Biochemistry 36:16197–16205

    Article  CAS  PubMed  Google Scholar 

  • Borbat PP, Freed JH (1999) Multiple-quantum ESR and distance measurements. Chem Phys Lett 313:145–154

    Article  CAS  Google Scholar 

  • Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291(5502):266–269

    Article  CAS  PubMed  Google Scholar 

  • Brockman H (1999) Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr Opin Struct Biol 9(4):438–443

    Article  CAS  PubMed  Google Scholar 

  • Budil DE, Lee S, Saxena S, Freed JH (1996) Nonlinearleast-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J Magn Reson 120:155–189

    Article  CAS  Google Scholar 

  • Bugg TDH, Ramaswamy S (2008) Non-heme iron-dependent dioxygenases: Unravelling catalytic mechanisms for complex enzymatic oxidations. Curr Opin Chem Biol 12:134–140

    Article  CAS  PubMed  Google Scholar 

  • Cañadas O, Casals C (2013) Differential scanning calorimetry of protein-lipid interactions. Methods Mol Biol 974:55–71

    Article  PubMed  CAS  Google Scholar 

  • Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48

    Article  PubMed  Google Scholar 

  • Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking". Annu Rev Biophys Biomol Struct 34:119–151

    Article  CAS  PubMed  Google Scholar 

  • Ciancaglini P, Yadav MC, Simão AM, Narisawa S, Pizauro JM, Farquharson C, Hoylaerts MF, Millán JL (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25(4):716–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Citadini APS, Pinto APA, Araujo APU, Nascimento OR, Costa-Filho AJ (2005) EPR studies of corocatechol 1,2-dioxygenase: Evidences of iron reduction during catalysis and of the binding of amphipatic molecules. Biophys J 88:3502–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe NR, Bernlohr DA (1998) Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta 1391:287–306

    Article  CAS  PubMed  Google Scholar 

  • Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295

    Article  CAS  PubMed  Google Scholar 

  • Costa-Filho AJ, Borbat PP, Crepeau RH, Ge M, Freed JH (2003) Lipid-gramicidin interactions: Dynamic structure of the boundary lipid by 2D-ELDOR. Biophys J 84:3364–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto SG, Nonato MC, Costa-Filho AJ (2008) Defects in Vesicle Core Induced by Escherichia coli Dihydroorotate Dehydrogenase. Biophys J 94:1746–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto SG, Nonato MC, Costa-Filho AJ (2011) Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension. Biochem Biophys Res Commun 414:487–492

    Article  CAS  PubMed  Google Scholar 

  • Dua X, Hladya V, Britt D (2005) Langmuir monolayer approaches to protein recognition through molecular imprinting. Biosens Bioelectron 20(10):2053–2060

    Article  CAS  Google Scholar 

  • Dyszy F, Pinto AP, Araújo AP, Costa-Filho AJ, 3 (2013) Probing the interaction of brain fatty acid binding protein (B-FABP) with model membranes. PLoS ONE 8:e 60198

    Article  CAS  Google Scholar 

  • Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA (1995) Importance of ribonucleotide availability to proliferating Tlymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem 270:29682–29689

    Article  CAS  PubMed  Google Scholar 

  • Fajer PG (2000) Electron spin resonance spectroscopy labeling in peptide and protein analysis. In Meyers RA (ed). Encyclopedia of analyticalchemistry, Wiley, Chichester, pp 5725–5761

  • Ferraroni M, Solyanikova IP, Kolomytseva MP, Scozzafava A, Golovleva L, Briganti F (2004) Crystal structure of 4-chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing Gram-positive Rhodococcus opacus 1CP. J Biol Chem 279:27646–27655

    Article  CAS  PubMed  Google Scholar 

  • Franks WT, Linden AH, Kunert B, van Rossum BJ, Oschkinat H (2012) Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions. Eur J Cell Biol 91:340–348

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7(6):489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia AF, Lopes JLS, Costa-Filho AJ, Wallace BA, Araujo APU (2013) Membrane interactions of S100A12 (Calgranulin C). PLoS ONE 8(12), e8255

    Google Scholar 

  • Garcia AF, Simão AM, Bolean M, Hoylaerts MF, Millán JL, Ciancaglini P, Costa-Filho AJ (2015) Effects of GPI-anchored TNAP on the dynamic structure of model membranes. Phys Chem Chem Phys 17(39):26295–26301

    Article  CAS  PubMed  Google Scholar 

  • Ge M, Freed JH (1998) Polarity profiles in oriented and dispersed phosphatidylcholine bilayers are different: an electron spin resonance study. Biophys J 74:910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge M, Freed JH (2009) Fusion peptide from influenza hemagglutinin increases membrane surface order: An electron-spin resonance study. Biophys J 96(12):4925–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glatz JFC, Van der Vusse GJ (1996) Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res 35:243–282

    Article  CAS  PubMed  Google Scholar 

  • Goñi F (2002) Non-permanent proteins in membranes: When proteins come as visitors (Review). Mol Membr Biol 19(4):237–245

    Article  PubMed  CAS  Google Scholar 

  • Guzzi R, Bartucci R (2015) Electron spin resonance of spin-labeled lipid assemblies and proteins. Arch Biochem Biophys 580:102–111

    Article  CAS  PubMed  Google Scholar 

  • Hanson GR, Berliner LJ (2009) High resolution EPR: applications to metalloenzymes and metals in medicine, Biological Magnetic Resonance. 2009th Edition. Springer, New York [N.Y.]

    Google Scholar 

  • Harris H (1989) The human alkaline phosphatases: what we know and what we donʼt know. Clin Chim Acta 186:133–150

    Article  Google Scholar 

  • Hemminga MA (2007) Introduction and future of site-directed spin labeling of membrane proteins. In: Hemminga MA, Berliner LJ (eds) ESR spectroscopy in membrane biophysics. Biological magnetic resonance, vol 27. Springer, Berlin, pp 1–16

  • Herrmann ML, Schleyerbach R, Kirschbaum BJ (2000) An immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 47:273–289

    Article  CAS  PubMed  Google Scholar 

  • Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid binding protein multigene family: Molecular and genetic insights into function. Trends Endocrinol Metab 11:175–180

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4(4):566–573

  • Hubbell WL, McConnell HM (1969) Orientation and motion of amphiphilic spin labels in membranes. Proc Natl Acad Sci U S A 64:20–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbell WL, McConnell HM (1971) Molecular motions in spin-labeled phospholipids and membranes. J Am Chem Soc 93:314–326

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Cafiso DS, Altenbach C, 9 (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7:735–739. 98: 7777–7782

    Article  CAS  PubMed  Google Scholar 

  • Hubbell WL, Lopez CJ, Altenbach C, Yang Z (2013) Technological advances in site-directed spin-labeling of proteins. Curr Opin Struct Biol 23:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Molec Graph 14:33–38

    Article  CAS  Google Scholar 

  • Hurley JH (2006) Membrane binding domains. Biochim Biophys Acta 1761:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    Article  CAS  PubMed  Google Scholar 

  • Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9:1895–1910

    Article  CAS  PubMed  Google Scholar 

  • Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) Sensitivity enhancement in pulse EPR distance measurement. J Magn Reson 169:1–12

    Article  CAS  PubMed  Google Scholar 

  • Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: A Web-based Graphical User Interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  • Johnson AE (2005) Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6(12):1078–1092

    Article  CAS  PubMed  Google Scholar 

  • Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49:253–279

    Article  CAS  PubMed  Google Scholar 

  • Judge PJ, Taylor GF, Dannatt HR, Watts A (2015) Solid-state nuclear magnetic resonance spectroscopy for membrane protein structure determination. Method Mol Biol 126:331–47

    Article  CAS  Google Scholar 

  • Kleinschmidt JH (2013) Lipid–protein interactions. Methods and protocols. Springer, Berlin

  • Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39:8396–8405

    Article  CAS  PubMed  Google Scholar 

  • Le Du MH, Stigbrand T, Taussig MJ, Ménez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 Å resolution. J Biol Chem 276:9158–9165

    Article  PubMed  Google Scholar 

  • Lehto MT, Sharom FJ (1998) Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5'-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer. Biochem J 332(Pt 1):101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehto MT, Sharom FJ (2002a) Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study. Biochemistry 41(26):8368–8376

    Article  CAS  PubMed  Google Scholar 

  • Lehto MT, Sharom FJ (2002b) PI-specific phospholipase C cleavage of a reconstituted GPI-anchored protein: modulation by the lipid bilayer. Biochemistry 41(4):1398–1408

    Article  CAS  PubMed  Google Scholar 

  • Lucke C, Gutierrez-Gonzales LH, Hamilton JA (2003) Intracellular lipid binding proteins: evolution, structure, and ligand binding. In: Duttaroy AK, Spener F (eds) Cellular proteins and their ligand fatty acids—emerging roles in gene expression, health and disease. Wiley, New York, pp 95–114

    Chapter  Google Scholar 

  • Marsh D (2001) Polarity and permeation profiles in lipid membranes. Proc Natl Acad Sci U S A 98:7777–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778(7–8):1545–1575

    Article  CAS  PubMed  Google Scholar 

  • Marsh D, Watts A (1982) Spin labeling and lipid-protein interactions in membranes. In: Griffith H (ed) Lipid-Protein Interactions. Vol. 2. P. C. Jost and 0. Wiley-Interscience, New York, pp 53–126

    Google Scholar 

  • Marsh D, Watts A, Pates RD, Uhl R, Knowles PF, Esmann M (1982) ESR spin-label studies of lipid-protein interactions in membranes. Biophys J 37:265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo K, Maki Y, Namatame H, Taniguchi M, Gekko K (2016) Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy. Proteins 84(3):349–359

    Article  CAS  PubMed  Google Scholar 

  • McComb RB, Bowers GN, Posen S (1979) Alkaline phosphatase. Plenum, New York

  • Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme. correlation with protein structure and dynamics. Biochemistry 35:7692–7704

    Article  CAS  PubMed  Google Scholar 

  • McHaourab HS, Steed PR, Kazmier K (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19(11):1549–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesquita NCMR, Dyszy FH, Kumagai PS, Araujo APU, Costa-Filho AJ (2013) Amphipatic molecules affect the kinetic profile of Pseudomonas putida chlorocatechol 1,2-dioxygenase. Eur Biophys J 42:655–660

    Article  CAS  PubMed  Google Scholar 

  • Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Moran P, Beasley H, Gorrell A, Martin E, Gribling P, Fuchs H, Gillett N, Burton LE, Caras IW (1992) Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo. J Immunol 149:1736–1743

    CAS  PubMed  Google Scholar 

  • Moss DW, Eaton RH, Smith JK, Whitby LG (1967) Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J 102:53–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768(8):1862–1885

    Article  CAS  PubMed  Google Scholar 

  • Ornston LN, Stanier RY (1966) Conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem 241:3776–3786

    CAS  PubMed  Google Scholar 

  • Páli T, Kóta Z (2013) Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids. Methods Mol Biol 974:297–328

    Article  PubMed  CAS  Google Scholar 

  • Redfield A (1965) The Theory of Relaxation Processes’. Adv Magn Reson 1:1

    Article  Google Scholar 

  • Rezende LA, Ciancaglini P, Pizauro JM, Leone FA (1998) Inorganic pyrophosphate-phosphohydrolytic activity associated with rat osseous plate alkaline phosphatase. Cell Mol Biol 44:293–302

    CAS  PubMed  Google Scholar 

  • Sacchettini JC, Gordon JI, Banaszak LJ (1989) Crystalstructure of rat intestinal fatty-acid-binding protein—refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol 208:327–339

    Article  CAS  PubMed  Google Scholar 

  • Sahu ID, Lorigan GA (2015) Biophysical EPR studies spplied to membrane proteins. J Phys Chem Biophys 5(6):188

    Article  PubMed  PubMed Central  Google Scholar 

  • Saliba AE, Vonkova I, Gavin AC (2015) The systematic analysis of protein–lipid interactions comes of age. Nat Rev Mol Cell Biol 16(12):73–761

    Article  CAS  Google Scholar 

  • Saslowsky DE, Lawrence J, Ren X, Brown DA, Henderson RM, Edwardson JM (2002) Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J Biol Chem 277(30):26966–26970

    Article  CAS  PubMed  Google Scholar 

  • Schneider DJ and Freed JH (1989) Calculating slow motional magnetic resonance spectra. In: Berliner LJ, Reuben J (eds) Spin labeling theory and applications, Plenum, New York, pp 1–76

  • Schreier H, Moran P, Caras IW (1994) Targeting of liposomes to cells expressing CD4 using glycosylphosphatidylinositol-anchored gp120 Influence of liposome composition on intracellular trafficking. J Biol Chem 269:9090–9098

    CAS  PubMed  Google Scholar 

  • Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273(2):1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Seelig J, Hasselbach W (1971) A spin label study of sarcoplasmic vesicles. Eur J Biochem 21:17–21

    Article  CAS  PubMed  Google Scholar 

  • Sesana S, Re F, Bulbarelli A, Salerno D, Cazzaniga E, Masserini M (2008) Membrane features and activity of GPI-anchored enzymes: alkaline phosphatase reconstituted in model membranes. Biochemistry 47(19):5433–5440

    Article  CAS  PubMed  Google Scholar 

  • Simão AM, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millán JL (2010) Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 285(10):7598–7609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Situ AJ, Schmidt T, Mazumder P, Ulmer TS (2014) Characterization of membrane protein interactions by isothermal titration calorimetry. J Mol Biol 426(21):3670–3680

    Article  CAS  PubMed  Google Scholar 

  • Smirnova TI, Smirnov AI (2015) Peptide-membrane interactions by spin-labeling EPR. Methods Enzymol 564:219–258

    Article  PubMed  Google Scholar 

  • Smith WL, Garavito RM, Ferguson-Miller S (2001) Membrane protein structural biology. Minireview Series J Biol Chem 276:32393–32394

    Article  CAS  PubMed  Google Scholar 

  • Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100:235–349

    Article  CAS  PubMed  Google Scholar 

  • Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Res Mol Biol 82:147–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowadski JM, Handschumacher MD, Murthy HMK, Foster BA, Wyckoff HW (1985) Refined structure of alkaline phosphatase from Escherichia coli at 2.8 Å resolution. J Mol Biol 186:417–433

    Article  CAS  PubMed  Google Scholar 

  • Storch J, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem 285:32679–32683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stott JB, Povstyan OV, Carr G, Barrese V, Greenwood IA (2015) G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proc Natl Acad Sci U S A 112(20):6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy MJ, Ciani L, Ge M, Smith AK, Holowka D, Baird B, Freed JH (2006) Coexisting domains in the Plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J 90:4452–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatulian SA (2013) Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 974:177–218

    Article  CAS  PubMed  Google Scholar 

  • Vauquelin G, Packeu A (2009) Ligands, their receptors and … plasma membranes. Mol Cell Endocrinol 311(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Vetting MW, Ohlendorf DH (2000) The 1.8 A° crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure 8:429–440

    Article  CAS  PubMed  Google Scholar 

  • Vicente EF, Basso LGM, Cespedes GF, Lorenzón EN, Castro MS, Mendens-Giannini MJS, Costa-Filho AJ, Cilli EM (2013) Dynamics and Conformational Studies of TOAC Spin Labeled Analogues of Ctx(Ile21)-Ha Peptide from Hypsiboas albopunctatus. PLoS ONE 8, e60818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente EF, Nobre-Pavinatto TM, Pavinatto FJ, Oliveira-Junior ON, Costa-Filho AJ, Cilli EM (2015) N-Terminal Microdomain Peptide from Human Dihydroorotate Dehydrogenase: Structure and Model Membrane Interactions. Protein Pept Lett 22:119–129

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    CAS  PubMed  Google Scholar 

  • Wolfs JA, Horváth LI, Marsh D, Watts A, Hemminga MA (1989) Spin-label ESR of bacteriophage M13 coat protein in mixed lipid bilayers. Characterization of molecular selectivity of charged phospholipids for the bacteriophage M13 coat protein in lipid bilayers. Biochemistry 28(26):9995–10001

    Article  CAS  PubMed  Google Scholar 

  • Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59:1096–1116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University of São Paulo, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grants No 2010/17662-8 and 2012/20367-3) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support. LGMB and LFSM hold FAPESP scholarships (2014/00206-0 and 2012/13309-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Costa-Filho.

Ethics declarations

Conflict of Interest

Luis G. Mansor Basso declares that he has no conflict of interest.

Luis F. Santos Mendes declares that he has no conflict of interest.

Antonio J. Costa-Filho declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Luis G. Mansor Basso and Luis F. Santos Mendes contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, L.G.M., Mendes, L.F.S. & Costa-Filho, A.J. The two sides of a lipid-protein story. Biophys Rev 8, 179–191 (2016). https://doi.org/10.1007/s12551-016-0199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-016-0199-5

Keywords

Navigation