Skip to main content

Heparanase: Historical Aspects and Future Perspectives

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

Heparanase is an endo-β-glucuronidase that cleaves at a limited number of internal sites the glycosaminoglycan heparan sulfate (HS). Heparanase enzymatic activity was first reported in 1975 and by 1983 evidence was beginning to emerge that the enzyme was a facilitator of tumor metastasis by cleaving HS chains present in blood vessel basement membranes and, thereby, aiding the passage of tumor cells through blood vessel walls. Due to a range of technical difficulties, it took another 16 years before heparanase was cloned and characterized in 1999 and a further 14 years before the crystal structure of the enzyme was solved. Despite these substantial deficiencies, there was steady progress in our understanding of heparanase long before the enzyme was fully characterized. For example, it was found as early as 1984 that activated T cells upregulate heparanase expression, like metastatic tumor cells, and the enzyme aids the entry of T cells and other leukocytes into inflammatory sites. Furthermore, it was discovered in 1989 that heparanase releases pre-existing growth factors and cytokines associated with HS in the extracellular matrix (ECM), the liberated growth factors/cytokines enhancing angiogenesis and wound healing. There were also the first hints that heparanase may have functions other than enzymatic activity, in 1995 it being reported that under certain conditions the enzyme could act as a cell adhesion molecule. Also, in the same year PI-88 (Muparfostat), the first heparanase inhibitor to reach and successfully complete a Phase III clinical trial was patented.

Nevertheless, the cloning of heparanase (also known as heparanase-1) in 1999 gave the field an enormous boost and some surprises. The biggest surprise was that there is only one heparanase encoding gene in the mammalian genome, despite earlier research, based on substrate specificity, suggesting that there are at least three different heparanases. This surprising conclusion has remained unchanged for the last 20 years. It also became evident that heparanase is a family 79 glycoside hydrolase that is initially produced as a pro-enzyme that needs to be processed by proteases to form an enzymatically active heterodimer. A related molecule, heparanase-2, was also discovered that is enzymatically inactive but, remarkably, recently has been shown to inhibit heparanase-1 activity as well as acting as a tumor suppressor that counteracts many of the pro-tumor properties of heparanase-1.

The early claim that heparanase plays a key role in tumor metastasis, angiogenesis and inflammation has been confirmed by many studies over the last 20 years. In fact, heparanase expression is enhanced in all major cancer types, namely carcinomas, sarcomas, and hematological malignancies, and correlates with increased metastasis and poor prognosis. Also, there is mounting evidence that heparanase plays a central role in the induction of inflammation-associated cancers. The enzymatic activity of heparanase has also emerged in unexpected situations, such as in the spread of HS-binding viruses and in Type-1 diabetes where the destruction of intracellular HS in pancreatic insulin-producing beta cells precipitates diabetes. But the most extraordinary recent discoveries have been with the realization that heparanase can exert a range of biological activities that are independent of its enzymatic function, most notably activation of several signaling pathways and being a transcription factor that controls methylation of histone tails. Collectively, these data indicate that heparanase is a truly multifunctional protein that has the additional property of cleaving HS chains and releasing from ECM and cell surfaces hundreds of HS-binding proteins with a plethora of functional consequences. Clearly, there are many unique features of this intriguing molecule that still remain to be explored and are highlighted in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbogast, B., Hopwood, J. J., & Dorfman, A. (1977). Heparinase activity in rat liver. Biochemical and Biophysical Research Communications, 75(3), 610–617.

    Article  CAS  PubMed  Google Scholar 

  2. Hook, M., Wasteson, A., & Oldberg, A. (1975). A heparan sulfate-degrading endoglycosidase from rat liver tissue. Biochemical and Biophysical Research Communications, 67(4), 1422–1428.

    Article  CAS  PubMed  Google Scholar 

  3. Klein, U., Kresse, H., & von Figura, K. (1976). Evidence for degradation of heparan sulfate by endoglycosidases: Glucosamine and hexuronic acid are reducing terminals of intracellular heparan sulfate from human skin fibroblasts. Biochemical and Biophysical Research Communications, 69(1), 158–166.

    Article  CAS  PubMed  Google Scholar 

  4. Klein, U., & Von Figura, K. (1976). Partial purification and characterization of heparan sulfate specific endoglucuronidase. Biochemical and Biophysical Research Communications, 73(3), 569–576.

    Article  CAS  PubMed  Google Scholar 

  5. Ogren, S., & Lindahl, U. (1975). Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. The Journal of Biological Chemistry, 250(7), 2690–2697.

    CAS  PubMed  Google Scholar 

  6. Wasteson, A., Hook, M., & Westermark, B. (1976). Demonstration of a platelet enzyme, degrading heparan sulphate. FEBS Letters, 64(1), 218–221.

    Article  CAS  PubMed  Google Scholar 

  7. Wasteson, A., et al. (1977). Effect of a platelet endoglycosidase on cell surface associated heparan sulphate of human cultured endothelial and glial cells. Thrombosis Research, 11(3), 309–321.

    Article  CAS  PubMed  Google Scholar 

  8. Kramer, R. H., Vogel, K. G., & Nicolson, G. L. (1982). Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. The Journal of Biological Chemistry, 257(5), 2678–2686.

    CAS  PubMed  Google Scholar 

  9. Nicolson, G. L. (1982). Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. The Journal of Histochemistry and Cytochemistry, 30(3), 214–220.

    Article  CAS  PubMed  Google Scholar 

  10. Nakajima, M., et al. (1983). Heparan sulfate degradation: Relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science, 220(4597), 611–613.

    Article  CAS  PubMed  Google Scholar 

  11. Vlodavsky, I., et al. (1983). Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: Relationship to tumor cell metastasis. Cancer Research, 43(6), 2704–2711.

    CAS  PubMed  Google Scholar 

  12. Hulett, M. D., et al. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nature Medicine, 5(7), 803–809.

    Article  CAS  PubMed  Google Scholar 

  13. Vlodavsky, I., et al. (1999). Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis. Nature Medicine, 5(7), 793–802.

    Article  CAS  PubMed  Google Scholar 

  14. Irimura, T., et al. (1983). High-speed gel-permeation chromatography of glycosaminoglycans: Its application to the analysis of heparan sulfate of embryonic carcinoma and its degradation products by tumor cell-derived heparanase. Analytical Biochemistry, 130(2), 461–468.

    Article  CAS  PubMed  Google Scholar 

  15. Vlodavsky, I., et al. (1992). Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation. Invasion & Metastasis, 12(2), 112–127.

    CAS  Google Scholar 

  16. Bartlett, M. R., Underwood, P. A., & Parish, C. R. (1995). Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: Evidence for cytokine dependence and detection of a novel sulfatase. Immunology and Cell Biology, 73(2), 113–124.

    Article  CAS  PubMed  Google Scholar 

  17. Nakajima, M., Irimura, T., & Nicolson, G. L. (1986). A solid-phase substrate of heparanase: Its application to assay of human melanoma for heparan sulfate degradative activity. Analytical Biochemistry, 157(1), 162–171.

    Article  CAS  PubMed  Google Scholar 

  18. Oosta, G. M., et al. (1982). Purification and properties of human platelet heparitinase. The Journal of Biological Chemistry, 257(19), 11249–11255.

    CAS  PubMed  Google Scholar 

  19. Sewell, R. F., Brenchley, P. E., & Mallick, N. P. (1989). Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. The Biochemical Journal, 264(3), 777–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoogewerf, A. J., et al. (1995). CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. The Journal of Biological Chemistry, 270(7), 3268–3277.

    Article  CAS  PubMed  Google Scholar 

  21. Freeman, C., & Parish, C. R. (1998). Human platelet heparanase: Purification, characterization and catalytic activity. The Biochemical Journal, 330(Pt 3), 1341–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Vouge, M. W., et al. (1994). Immunoselection of GRP94/endoplasmin from a KNRK cell-specific lambda gt11 library using antibodies directed against a putative heparanase amino-terminal peptide. International Journal of Cancer, 56(2), 286–294.

    Article  PubMed  Google Scholar 

  23. Graham, L. D. (1994). Tumour rejection antigens of the hsp90 family (gp96) closely resemble tumour-associated heparanase enzymes. The Biochemical Journal, 301(Pt 3), 917–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakajima, M., Irimura, T., & Nicolson, G. L. (1988). Heparanases and tumor metastasis. Journal of Cellular Biochemistry, 36(2), 157–167.

    Article  CAS  PubMed  Google Scholar 

  25. Thunberg, L., et al. (1982). Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. The Journal of Biological Chemistry, 257(17), 10278–10282.

    CAS  PubMed  Google Scholar 

  26. Freeman, C., & Parish, C. R. (1997). A rapid quantitative assay for the detection of mammalian heparanase activity. The Biochemical Journal, 325(Pt 1), 229–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams, M. D., et al. (1991). Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 252(5013), 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  28. Kussie, P. H., et al. (1999). Cloning and functional expression of a human heparanase gene. Biochemical and Biophysical Research Communications, 261(1), 183–187.

    Article  CAS  PubMed  Google Scholar 

  29. Toyoshima, M., & Nakajima, M. (1999). Human heparanase. Purification, characterization, cloning, and expression. The Journal of Biological Chemistry, 274(34), 24153–24160.

    Article  CAS  PubMed  Google Scholar 

  30. Fairbanks, M. B., et al. (1999). Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. The Journal of Biological Chemistry, 274(42), 29587–29590.

    Article  CAS  PubMed  Google Scholar 

  31. Dempsey, L. A., et al. (2000). Heparanase expression in invasive trophoblasts and acute vascular damage. Glycobiology, 10(5), 467–475.

    Article  CAS  PubMed  Google Scholar 

  32. Abboud-Jarrous, G., et al. (2008). Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baker, E., et al. (1999). Human HPA endoglycosidase heparanase. Map position 4q21.3. Chromosome Research, 7(4), 319.

    Article  CAS  PubMed  Google Scholar 

  34. Dong, J., et al. (2000). Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene, 253(2), 171–178.

    Article  CAS  PubMed  Google Scholar 

  35. Hulett, M. D., et al. (2000). Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry, 39(51), 15659–15667.

    Article  CAS  PubMed  Google Scholar 

  36. McKenzie, E., et al. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  37. Vlodavsky, I., et al. (2018). Opposing functions of Heparanase-1 and Heparanase-2 in Cancer progression. Trends in Biochemical Sciences, 43(1), 18–31.

    Article  CAS  PubMed  Google Scholar 

  38. Bashkin, P., et al. (1989). Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry, 28(4), 1737–1743.

    Article  CAS  PubMed  Google Scholar 

  39. Simizu, S., et al. (2007). Involvement of disulfide bond formation in the activation of heparanase. Cancer Research, 67(16), 7841–7849.

    Article  CAS  PubMed  Google Scholar 

  40. Simizu, S., et al. (2004). Secretion of heparanase protein is regulated by glycosylation in human tumor cell lines. The Journal of Biological Chemistry, 279(4), 2697–2703.

    Article  CAS  PubMed  Google Scholar 

  41. Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: A key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.

    CAS  PubMed  Google Scholar 

  42. Wu, L., et al. (2015). Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structural & Molecular Biology, 22(12), 1016–1022.

    Article  CAS  Google Scholar 

  43. Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate-protein interactions. Annual Review of Biochemistry, 83, 129–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stewart, M. D., & Sanderson, R. D. (2014). Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biology, 35, 56–59.

    Article  CAS  PubMed  Google Scholar 

  45. Parish, C. R. (2006). The role of heparan sulphate in inflammation. Nature Reviews. Immunology, 6(9), 633–643.

    Article  CAS  PubMed  Google Scholar 

  46. Mao, Y., et al. (2014). A liquid chromatography-mass spectrometry-based approach to characterize the substrate specificity of mammalian heparanase. The Journal of Biological Chemistry, 289(49), 34141–34151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson, J. C., et al. (2014). 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Biochemical and Biophysical Research Communications, 443(1), 185–188.

    Article  CAS  PubMed  Google Scholar 

  48. Chhabra, M., & Ferro, V. (2018). The development of assays for heparanase enzymatic activity: Towards a gold standard. Molecules, 23(11), 2971.

    Article  PubMed Central  CAS  Google Scholar 

  49. Peterson, S. B., & Liu, J. (2013). Multi-faceted substrate specificity of heparanase. Matrix Biology, 32(5), 223–227.

    Article  CAS  PubMed  Google Scholar 

  50. Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38(12), 2018–2039.

    Article  CAS  Google Scholar 

  51. Muenzer, J. (2011). Overview of the mucopolysaccharidoses. Rheumatology (Oxford), 50(Suppl 5), v4–v12.

    Article  CAS  Google Scholar 

  52. Gingis-Velitski, S., et al. (2004). Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. The Journal of Biological Chemistry, 279(42), 44084–44092.

    Article  CAS  PubMed  Google Scholar 

  53. Zetser, A., et al. (2004). Processing and activation of latent heparanase occurs in lysosomes. Journal of Cell Science, 117(Pt 11), 2249–2258.

    Article  CAS  PubMed  Google Scholar 

  54. Lawrence, R., et al. (2014). Glycan-based biomarkers for mucopolysaccharidoses. Molecular Genetics and Metabolism, 111(2), 73–83.

    Article  CAS  PubMed  Google Scholar 

  55. Zcharia, E., et al. (2009). Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One, 4(4), e5181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shteingauz, A., et al. (2015). Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Research, 75(18), 3946–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ilan, N., Shteingauz, A., & Vlodavsky, I. (2015). Function from within: Autophagy induction by HPSE/heparanase--new possibilities for intervention. Autophagy, 11(12), 2387–2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yurchenco, P. D., & Schittny, J. C. (1990). Molecular architecture of basement membranes. The FASEB Journal, 4(6), 1577–1590.

    Article  CAS  PubMed  Google Scholar 

  59. Duffy, M. J. (1996). Proteases as prognostic markers in cancer. Clinical Cancer Research, 2(4), 613–618.

    CAS  PubMed  Google Scholar 

  60. Liotta, L. A., et al. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–68.

    Article  CAS  PubMed  Google Scholar 

  61. Bar-Ner, M., et al. (1986). Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the subendothelial extracellular matrix. Journal of Cellular Physiology, 128(2), 299–306.

    Article  CAS  PubMed  Google Scholar 

  62. Ricoveri, W., & Cappelletti, R. (1986). Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma. Cancer Research, 46(8), 3855–3861.

    CAS  PubMed  Google Scholar 

  63. Schwarz, L. C., et al. (1990). Relationships between heparanase activity and increasing metastatic potential of fibroblasts transfected with various oncogenes. Cancer Letters, 51(3), 187–192.

    Article  CAS  PubMed  Google Scholar 

  64. Eldor, A., et al. (1987). Role of heparanase in platelet and tumor cell interactions with the subendothelial extracellular matrix. Seminars in Thrombosis and Hemostasis, 13(4), 475–488.

    Article  CAS  PubMed  Google Scholar 

  65. Vlodavsky, I., et al. (2000). Mammalian heparanase as mediator of tumor metastasis and angiogenesis. The Israel Medical Association Journal, 2(Suppl), 37–45.

    PubMed  Google Scholar 

  66. Friedmann, Y., et al. (2000). Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. The American Journal of Pathology, 157(4), 1167–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Edovitsky, E., et al. (2004). Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. Journal of the National Cancer Institute, 96(16), 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  68. Roy, M., et al. (2005). Antisense-mediated suppression of Heparanase gene inhibits melanoma cell invasion. Neoplasia, 7(3), 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lerner, I., et al. (2008). Function of heparanase in prostate tumorigenesis: Potential for therapy. Clinical Cancer Research, 14(3), 668–676.

    Article  CAS  PubMed  Google Scholar 

  70. Rivara, S., Milazzo, F. M., & Giannini, G. (2016). Heparanase: A rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Medicinal Chemistry, 8(6), 647–680.

    Article  CAS  PubMed  Google Scholar 

  71. Vlodavsky, I., et al. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist Update, 29, 54–75.

    Article  Google Scholar 

  72. Cassinelli, G., et al. (2013). Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochemical Pharmacology, 85(10), 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  73. Vlodavsky, I., et al. (2012). Significance of heparanase in cancer and inflammation. Cancer Microenvironment, 5(2), 115–132.

    Article  CAS  PubMed  Google Scholar 

  74. Vreys, V., & David, G. (2007). Mammalian heparanase: What is the message? Journal of Cellular and Molecular Medicine, 11(3), 427–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hammond, E., et al. (2014). The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Frontiers in Oncology, 4, 195.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Naparstek, Y., et al. (1984). Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature, 310(5974), 241–244.

    Article  CAS  PubMed  Google Scholar 

  77. Matzner, Y., et al. (1985). Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes. The Journal of Clinical Investigation, 76(4), 1306–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, G., et al. (2004). Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry, 43(17), 4971–4977.

    Article  CAS  PubMed  Google Scholar 

  79. Edovitsky, E., et al. (2006). Role of endothelial heparanase in delayed-type hypersensitivity. Blood, 107(9), 3609–3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lerner, I., et al. (2011). Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. The Journal of Clinical Investigation, 121(5), 1709–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schmidt, E. P., et al. (2012). The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nature Medicine, 18(8), 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  82. Rao, G., et al. (2011). Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: A potential role in the pathogenesis of atherosclerosis. Diabetologia, 54(6), 1527–1538.

    Article  CAS  PubMed  Google Scholar 

  83. Elkin, M., et al. (2003). Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Research, 63(24), 8821–8826.

    CAS  PubMed  Google Scholar 

  84. Xu, X., et al. (2007). Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium. Human Reproduction, 22(4), 927–937.

    Article  CAS  PubMed  Google Scholar 

  85. Meirovitz, A., et al. (2013). Heparanase in inflammation and inflammation-associated cancer. The FEBS Journal, 280(10), 2307–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goldberg, R., et al. (2013). Versatile role of heparanase in inflammation. Matrix Biology, 32(5), 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grivennikov, S. I., & Karin, M. (2010). Inflammation and oncogenesis: A vicious connection. Current Opinion in Genetics & Development, 20(1), 65–71.

    Article  CAS  Google Scholar 

  88. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Article  CAS  PubMed  Google Scholar 

  89. Sanderson, R. D., et al. (2017). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284(1), 42–55.

    Article  CAS  PubMed  Google Scholar 

  90. Taipale, J., & Keski-Oja, J. (1997). Growth factors in the extracellular matrix. The FASEB Journal, 11(1), 51–59.

    Article  CAS  PubMed  Google Scholar 

  91. Vlodavsky, I., et al. (1996). Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Reviews, 15(2), 177–186.

    Article  CAS  PubMed  Google Scholar 

  92. Sasisekharan, R., et al. (2002). Roles of heparan-sulphate glycosaminoglycans in cancer. Nature Reviews Cancer, 2(7), 521–528.

    Article  CAS  PubMed  Google Scholar 

  93. Bishop, J. R., Schuksz, M., & Esko, J. D. (2007). Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 446(7139), 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  94. Joyce, J. A., et al. (2005). A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene, 24(25), 4037–4051.

    Article  CAS  PubMed  Google Scholar 

  95. Kato, M., et al. (1998). Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Medicine, 4(6), 691–697.

    Article  CAS  PubMed  Google Scholar 

  96. Elkin, M., et al. (2001). Heparanase as mediator of angiogenesis: Mode of action. The FASEB Journal, 15(9), 1661–1663.

    Article  CAS  PubMed  Google Scholar 

  97. Ziolkowski, A. F., et al. (2012). Heparan sulfate and heparanase play key roles in mouse beta cell survival and autoimmune diabetes. The Journal of Clinical Investigation, 122(1), 132–141.

    Article  CAS  PubMed  Google Scholar 

  98. Simeonovic, C. J., et al. (2018). Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans. PLoS One, 13(2), e0191360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Simeonovic, C. J., et al. (2013). Heparanase and autoimmune diabetes. Frontiers in Immunology, 4, 471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Parish, C. R., et al. (2013). Unexpected new roles for heparanase in type 1 diabetes and immune gene regulation. Matrix Biology, 32(5), 228–233.

    Article  CAS  PubMed  Google Scholar 

  101. Kamhi, E., et al. (2013). Glycosaminoglycans in infectious disease. Biological reviews of the Cambridge Philosophical Society, 928–943.

    Google Scholar 

  102. Bouvier, N. M., & Lowen, A. C. (2010). Animal models for influenza virus pathogenesis and transmission. Viruses, 2(8), 1530–1563.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hadigal, S. R., et al. (2015). Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nature Communications, 6, 6985.

    Article  CAS  PubMed  Google Scholar 

  104. Agelidis, A. M., et al. (2017). Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Reports, 20(2), 439–450.

    Article  CAS  PubMed  Google Scholar 

  105. Khanna, M., et al. (2019). Is host heparanase required for the rapid spread of heparan sulfate binding viruses? Virology, 529, 1–6.

    Article  CAS  PubMed  Google Scholar 

  106. Irimura, T., Nakajima, M., & Nicolson, G. L. (1986). Chemically modified heparins as inhibitors of heparan sulfate specific endo-beta-glucuronidase (heparanase) of metastatic melanoma cells. Biochemistry, 25(18), 5322–5328.

    Article  CAS  PubMed  Google Scholar 

  107. Bar-Ner, M., et al. (1987). Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood, 70(2), 551–557.

    Article  CAS  PubMed  Google Scholar 

  108. Coombe, D. R., et al. (1987). Analysis of the inhibition of tumour metastasis by sulphated polysaccharides. International Journal of Cancer, 39(1), 82–88.

    Article  CAS  PubMed  Google Scholar 

  109. Parish, C. R., et al. (1987). Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour-cell-derived heparanases. International Journal of Cancer, 40(4), 511–518.

    Article  CAS  PubMed  Google Scholar 

  110. Parish, C. R., et al. (1999). Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Research, 59(14), 3433–3441.

    CAS  PubMed  Google Scholar 

  111. Freeman, C., et al. (2005). Use of sulfated linked cyclitols as heparan sulfate mimetics to probe the heparin/heparan sulfate binding specificity of proteins. The Journal of Biological Chemistry, 280(10), 8842–8849.

    Article  CAS  PubMed  Google Scholar 

  112. Marchetti, D., et al. (2003). Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. International Journal of Cancer, 104(2), 167–174.

    Article  CAS  PubMed  Google Scholar 

  113. Khachigian, L. M., & Parish, C. R. (2004). Phosphomannopentaose sulfate (PI-88): Heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovascular Drug Reviews, 22(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  114. Ferro, V., et al. (2007). PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Seminars in Thrombosis and Hemostasis, 33(5), 557–568.

    Article  CAS  PubMed  Google Scholar 

  115. Hossain, M. M., et al. (2010). Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology, 20(2), 175–186.

    Article  CAS  PubMed  Google Scholar 

  116. Liu, C. J., et al. (2009). Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: A randomized phase II trial for safety and optimal dosage. Journal of Hepatology, 50(5), 958–968.

    Article  CAS  PubMed  Google Scholar 

  117. Chen, P.-J., et al., A phase III trial of muparfostat (PI-88) as adjuvant therapy in patients with hepatitis virus related hepatocellular carcinoma (HV-HCC) after resection. Annals of Oncology, 2017. 28: p. Issue suppl_5 624PD.

    Google Scholar 

  118. Unal, E., et al. (2016). Microvascular invasion in hepatocellular carcinoma. Diagnostic and Interventional Radiology, 22(2), 125–132.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Dredge, K., et al. (2011). PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. British Journal of Cancer, 104(4), 635–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ferro, V., et al. (2012). Discovery of PG545: A highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. Journal of Medicinal Chemistry, 55(8), 3804–3813.

    Article  CAS  PubMed  Google Scholar 

  121. Abassi, Z., et al. (2017). Involvement of heparanase in the pathogenesis of acute kidney injury: Nephroprotective effect of PG545. Oncotarget, 8(21), 34191–34204.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Singh, P., et al. (2017). The Heparanase inhibitor PG545 attenuates Colon Cancer initiation and growth, associating with increased p21 expression. Neoplasia, 19(3), 175–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Weissmann, M., et al. (2018). The heparanase inhibitor PG545 is a potent anti-lymphoma drug: Mode of action. Matrix Biology.

    Google Scholar 

  124. Jia, L., & Ma, S. (2016). Recent advances in the discovery of heparanase inhibitors as anti-cancer agents. European Journal of Medicinal Chemistry, 121, 209–220.

    Article  CAS  PubMed  Google Scholar 

  125. Levy-Adam, F., et al. (2005). Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. The Journal of Biological Chemistry, 280(21), 20457–20466.

    Article  CAS  PubMed  Google Scholar 

  126. Miao, H. Q., et al. (1999). Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. International Journal of Cancer, 83(3), 424–431.

    Article  CAS  PubMed  Google Scholar 

  127. Myler, H. A., et al. (2006). Novel heparanase-inhibiting antibody reduces neointima formation. Journal of Biochemistry, 139(3), 339–345.

    Article  CAS  PubMed  Google Scholar 

  128. Zheng, L., et al. (2010). Small RNA interference-mediated gene silencing of heparanase abolishes the invasion, metastasis and angiogenesis of gastric cancer cells. BMC Cancer, 10, 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, T., et al. (2008). HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia, 10(9), 977–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gilat, D., et al. (1995). Molecular behavior adapts to context: Heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. The Journal of Experimental Medicine, 181(5), 1929–1934.

    Article  CAS  PubMed  Google Scholar 

  131. Goldshmidt, O., et al. (2003). Heparanase mediates cell adhesion independent of its enzymatic activity. The FASEB Journal, 17(9), 1015–1025.

    Article  CAS  PubMed  Google Scholar 

  132. Sotnikov, I., et al. (2004). Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. Journal of Immunology, 172(9), 5185–5193.

    Article  CAS  Google Scholar 

  133. Zetser, A., et al. (2003). Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Research, 63(22), 7733–7741.

    CAS  PubMed  Google Scholar 

  134. Gingis-Velitski, S., et al. (2004). Heparanase induces endothelial cell migration via protein kinase B/Akt activation. The Journal of Biological Chemistry, 279(22), 23536–23541.

    Article  CAS  PubMed  Google Scholar 

  135. Barash, U., et al. (2010). Proteoglycans in health and disease: New concepts for heparanase function in tumor progression and metastasis. The FEBS Journal, 277(19), 3890–3903.

    Article  CAS  PubMed  Google Scholar 

  136. Fux, L., et al. (2009). Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research, 69(5), 1758–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Boyango, I., et al. (2014). Heparanase cooperates with Ras to drive breast and skin tumorigenesis. Cancer Research, 74(16), 4504–4514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Barash, U., et al. (2014). Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia, 28(11), 2178–2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boyango, I., et al. (2018). Targeting heparanase to the mammary epithelium enhances mammary gland development and promotes tumor growth and metastasis. Matrix Biology, 65, 91–103.

    Article  CAS  PubMed  Google Scholar 

  140. Gutter-Kapon, L., et al. (2016). Heparanase is required for activation and function of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 113(48), E7808–E7817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen, L., & Sanderson, R. D. (2009). Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One, 4(3), e4947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kobayashi, M., et al. (2006). Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation, 74(5), 235–243.

    Article  CAS  PubMed  Google Scholar 

  143. Nobuhisa, T., et al. (2005). Emergence of nuclear heparanase induces differentiation of human mammary cancer cells. Biochemical and Biophysical Research Communications, 331(1), 175–180.

    Article  CAS  PubMed  Google Scholar 

  144. Schubert, S. Y., et al. (2004). Human heparanase nuclear localization and enzymatic activity. Laboratory Investigation, 84(5), 535–544.

    Article  CAS  PubMed  Google Scholar 

  145. Doweck, I., et al. (2006). Heparanase localization and expression by head and neck cancer: Correlation with tumor progression and patient survival. Neoplasia, 8(12), 1055–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ohkawa, T., et al. (2004). Localization of heparanase in esophageal cancer cells: Respective roles in prognosis and differentiation. Laboratory Investigation, 84(10), 1289–1304.

    Article  CAS  PubMed  Google Scholar 

  147. Nobuhisa, T., et al. (2007). Translocation of heparanase into nucleus results in cell differentiation. Cancer Science, 98(4), 535–540.

    Article  CAS  PubMed  Google Scholar 

  148. He, Y. Q., et al. (2012). The endoglycosidase heparanase enters the nucleus of T lymphocytes and modulates H3 methylation at actively transcribed genes via the interplay with key chromatin modifying enzymes. Transcription, 3(3), 130–145.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Vreys, V., et al. (2005). Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. The Journal of Biological Chemistry, 280(39), 33141–33148.

    Article  CAS  PubMed  Google Scholar 

  150. Wood, R. J., & Hulett, M. D. (2008). Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD222) binds enzymatically active heparanase independently of mannose 6-phosphate to promote extracellular matrix degradation. The Journal of Biological Chemistry, 283(7), 4165–4176.

    Article  CAS  PubMed  Google Scholar 

  151. Wang, B., et al. (2012). Accelerated resolution of AA amyloid in heparanase knockout mice is associated with matrix metalloproteases. PLoS One, 7(7), e39899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kelley, L. C., et al. (2014). Traversing the basement membrane in vivo: A diversity of strategies. The Journal of Cell Biology, 204(3), 291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Franco-Serrano, L., et al. (2018). Multifunctional proteins: Involvement in human diseases and targets of current drugs. The Protein Journal, 37(5), 444–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Simon Davis, D. A., & Parish, C. R. (2013). Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Frontiers in Immunology, 4, 470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Levy-Adam, F., et al. (2010). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Parish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, M., Parish, C.R. (2020). Heparanase: Historical Aspects and Future Perspectives. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_3

Download citation

Publish with us

Policies and ethics