Skip to main content

Heparanase: A Dynamic Promoter of Myeloma Progression

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

It has been speculated for many years that heparanase plays an important role in the progression of cancer due largely to the finding that its expression is weak or absent in normal tissues but generally as tumors become more aggressive heparanase expression increases. However, it is only in the last decade or so that we have begun to understand the molecular mechanism behind the sinister role that heparanase plays in cancer. In this review, we describe the many functions of heparanase in promoting the growth, angiogenesis and metastasis of multiple myeloma, a devastating cancer that localizes predominantly within the bone marrow and spreads throughout the skeletal system devouring bone and ultimately leading to death of almost all patients diagnosed with this disease. We also explore recent discoveries related to how heparanase primes exosome biogenesis and how heparanase enhances myeloma tumor chemoresistance. Discovery of these multiple tumor-promoting pathways that are driven by heparanase identified the enzyme as an ideal target for therapy, an approach recently tested in a Phase I trial in myeloma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marino, S., & Roodman, G. D. (2018). Multiple myeloma and bone: The fatal interaction. Cold Spring Harbor Perspectives in Medicine, 8(8). https://doi.org/10.1101/cshperspect.a031286.

  2. Galli, M., Chatterjee, M., Grasso, M., Specchia, G., Magen, H., Einsele, H., Celeghini, I., Barbieri, P., Paoletti, D., Pace, S., Sanderson, R. D., Rambaldi, A., & Nagler, A. (2018). Phase I study of the heparanase inhibitor roneparstat: An innovative approach for ultiple myeloma therapy. Haematologica, 103(10), e469–e472. https://doi.org/10.3324/haematol.2017.182865.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ramani, V. C., Purushothaman, A., Stewart, M. D., Thompson, C. A., Vlodavsky, I., Au, J. L., & Sanderson, R. D. (2013). The heparanase/syndecan-1 axis in cancer: Mechanisms and therapies. The FEBS Journal, 280(10), 2294–2306. https://doi.org/10.1111/febs.12168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, Y., Macleod, V., Miao, H. Q., Theus, A., Zhan, F., Shaughnessy, J. D., Jr., Sawyer, J., Li, J. P., Zcharia, E., Vlodavsky, I., & Sanderson, R. D. (2007). Heparanase enhances syndecan-1 shedding: A novel mechanism for stimulation of tumor growth and metastasis. The Journal of Biological Chemistry, 282(18), 13326–13333.

    Article  CAS  Google Scholar 

  5. Lovell, R., Dunn, J. A., Begum, G., Barth, N. J., Plant, T., Moss, P. A., Drayson, M. T., Pratt, G., & Working Party on Leukaemia in Adults of the National Cancer Research Institute Haematological Oncology Clinical Studies G. (2005). Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. British Journal of Haematology, 130(4), 542–548. https://doi.org/10.1111/j.1365-2141.2005.05647.x.

    Article  CAS  PubMed  Google Scholar 

  6. Seidel, C., Sundan, A., Hjorth, M., Turesson, I., Dahl, I. M., Abildgaard, N., Waage, A., & Borset, M. (2000). Serum syndecan-1: A new independent prognostic marker in multiple myeloma. Blood, 95(2), 388–392.

    Article  CAS  Google Scholar 

  7. Stewart, M. D., Ramani, V. C., & Sanderson, R. D. (2015). Shed Syndecan-1 Translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: A NOVEL MECHANISM OF TUMOR-HOST CROSS-TALK. The Journal of Biological Chemistry, 290(2), 941–949. https://doi.org/10.1074/jbc.M114.608455.

    Article  CAS  PubMed  Google Scholar 

  8. Jung, O., Trapp-Stamborski, V., Purushothaman, A., Jin, H., Wang, H., Sanderson, R. D., & Rapraeger, A. C. (2016). Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: Prevention by novel synstatins. Oncogene, 5, e202. https://doi.org/10.1038/oncsis.2016.5.

    Article  CAS  Google Scholar 

  9. Couchman, J. R., Multhaupt, H., & Sanderson, R. D. (2016). Recent insights into cell surface Heparan sulphate proteoglycans and Cancer. F1000Res, 5. https://doi.org/10.12688/f1000research.8543.1.

  10. Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R. D., & Ilan, N. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates, 29, 54–75. https://doi.org/10.1016/j.drup.2016.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramani, V. C., Zhan, F., He, J., Barbieri, P., Noseda, A., Tricot, G., & Sanderson, R. D. (2016). Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget, 7, 1598–1607. https://doi.org/10.18632/oncotarget.6408.

    Article  PubMed  Google Scholar 

  12. Franqui-Machin, R., Hao, M., Bai, H., Gu, Z., Zhan, X., Habelhah, H., Jethava, Y., Qiu, L., Frech, I., Tricot, G., & Zhan, F. (2018). Destabilizing NEK2 overcomes resistance to proteasome inhibition in multiple myeloma. The Journal of Clinical Investigation, 128(7), 2877–2893. https://doi.org/10.1172/JCI98765.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ramani, V. C., Vlodavsky, I., Ng, M., Zhang, Y., Barbieri, P., Noseda, A., & Sanderson, R. D. (2016). Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biology, 55, 22–34. https://doi.org/10.1016/j.matbio.2016.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, Y., MacLeod, V., Dai, Y., Khotskaya-Sample, Y., Shriver, Z., Venkataraman, G., Sasisekharan, R., Naggi, A., Torri, G., Casu, B., Vlodavsky, I., Suva, L. J., Epstein, J., Yaccoby, S., Shaughnessy, J. D., Jr., Barlogie, B., & Sanderson, R. D. (2007). The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 110(6), 2041–2048.

    Article  CAS  Google Scholar 

  15. Sanderson, R. D., & Yang, Y. (2008). Syndecan-1: A dynamic regulator of the myeloma microenvironment. Clinical & Experimental Metastasis, 25(2), 149–159.

    Article  CAS  Google Scholar 

  16. Bayer-Garner, I. B., Sanderson, R. D., Dhodapkar, M. V., Owens, R. B., & Wilson, C. S. (2001). Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: Shed syndecan-1 accumulates in fibrotic regions. Modern Pathology, 14(10), 1052–1058.

    Article  CAS  Google Scholar 

  17. Sanderson, R. D., Yang, Y., Suva, L. J., & Kelly, T. (2004). Heparan sulfate proteoglycans and heparanase--partners in osteolytic tumor growth and metastasis. Matrix Biology, 23(6), 341–352.

    Article  CAS  Google Scholar 

  18. Yang, Y., Yaccoby, S., Liu, W., Langford, J. K., Pumphrey, C. Y., Theus, A., Epstein, J., & Sanderson, R. D. (2002). Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood, 100(2), 610–617.

    Article  CAS  Google Scholar 

  19. Mahtouk, K., Hose, D., Raynaud, P., Hundemer, M., Jourdan, M., Jourdan, E., Pantesco, V., Baudard, M., De Vos, J., Larroque, M., Moehler, T., Rossi, J. F., Reme, T., Goldschmidt, H., & Klein, B. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109(11), 4914–4923. https://doi.org/10.1182/blood-2006-08-043232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Purushothaman, A., Chen, L., Yang, Y., & Sanderson, R. D. (2008). Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. The Journal of Biological Chemistry, 283(47), 32628–32636. https://doi.org/10.1074/jbc.M806266200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zcharia, E., Jia, J., Zhang, X., Baraz, L., Lindahl, U., Peretz, T., Vlodavsky, I., & Li, J. P. (2009). Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One, 4(4), e5181. https://doi.org/10.1371/journal.pone.0005181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Purushothaman, A., Babitz, S. K., & Sanderson, R. D. (2012). Heparanase enhances the insulin receptor signaling pathway to activate extracellular signal-regulated kinase in multiple myeloma. The Journal of Biological Chemistry, 287(49), 41288–41296. https://doi.org/10.1074/jbc.M112.391417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sprynski, A. C., Hose, D., Kassambara, A., Vincent, L., Jourdan, M., Rossi, J. F., Goldschmidt, H., & Klein, B. (2010). Insulin is a potent myeloma cell growth factor through insulin/IGF-1 hybrid receptor activation. Leukemia, 24(11), 1940–1950. https://doi.org/10.1038/leu.2010.192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hideshima, T., Bergsagel, P. L., Kuehl, W. M., & Anderson, K. C. (2004). Advances in biology of multiple myeloma: Clinical applications. Blood, 104(3), 607–618. https://doi.org/10.1182/blood-2004-01-0037.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, K., Kong, S. Y., Fulciniti, M., Li, X., Song, W., Nahar, S., Burger, P., Rumizen, M. J., Podar, K., Chauhan, D., Hideshima, T., Munshi, N. C., Richardson, P., Clark, A., Ogden, J., Goutopoulos, A., Rastelli, L., Anderson, K. C., & Tai, Y. T. (2010). Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. British Journal of Haematology, 149(4), 537–549. https://doi.org/10.1111/j.1365-2141.2010.08127.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schubert, S. Y., Ilan, N., Shushy, M., Ben-Izhak, O., Vlodavsky, I., & Goldshmidt, O. (2004). Human heparanase nuclear localization and enzymatic activity. Laboratory Investigation, 84(5), 535–544.

    Article  CAS  Google Scholar 

  27. Kobayashi, M., Naomoto, Y., Nobuhisa, T., Okawa, T., Takaoka, M., Shirakawa, Y., Yamatsuji, T., Matsuoka, J., Mizushima, T., Matsuura, H., Nakajima, M., Nakagawa, H., Rustgi, A., & Tanaka, N. (2006). Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation, 74(5), 235–243.

    Article  CAS  Google Scholar 

  28. Zhang, L., Sullivan, P., Suyama, J., & Marchetti, D. (2010). Epidermal growth factor-induced heparanase nucleolar localization augments DNA topoisomerase I activity in brain metastatic breast cancer. Molecular Cancer Research, 8(2), 278–290. https://doi.org/10.1158/1541-7786.MCR-09-0375.

    Article  CAS  PubMed  Google Scholar 

  29. He, Y. Q., Sutcliffe, E. L., Bunting, K. L., Li, J., Goodall, K. J., Poon, I. K., Hulett, M. D., Freeman, C., Zafar, A., McInnes, R. L., Taya, T., Parish, C. R., & Rao, S. (2012). The endoglycosidase heparanase enters the nucleus of T lymphocytes and modulates H3 methylation at actively transcribed genes via the interplay with key chromatin modifying enzymes. Transcription, 3(3), 130–145. https://doi.org/10.4161/trns.19998.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Doweck, I., Kaplan-Cohen, V., Naroditsky, I., Sabo, E., Ilan, N., & Vlodavsky, I. (2006). Heparanase localization and expression by head and neck cancer: Correlation with tumor progression and patient survival. Neoplasia, 8(12), 1055–1061.

    Article  CAS  Google Scholar 

  31. Ohkawa, T., Naomoto, Y., Takaoka, M., Nobuhisa, T., Noma, K., Motoki, T., Murata, T., Uetsuka, H., Kobayashi, M., Shirakawa, Y., Yamatsuji, T., Matsubara, N., Matsuoka, J., Haisa, M., Gunduz, M., Tsujigiwa, H., Nagatsuka, H., Hosokawa, M., Nakajima, M., & Tanaka, N. (2004). Localization of heparanase in esophageal cancer cells: Respective roles in prognosis and differentiation. Laboratory Investigation, 84(10), 1289–1304. https://doi.org/10.1038/labinvest.3700159.

    Article  CAS  PubMed  Google Scholar 

  32. Hebbes, T. R., Thorne, A. W., & Crane-Robinson, C. (1988). A direct link between core histone acetylation and transcriptionally active chromatin. The EMBO Journal, 7(5), 1395–1402.

    Article  CAS  Google Scholar 

  33. Turner, B. M., & O’Neill, L. P. (1995). Histone acetylation in chromatin and chromosomes. Seminars in Cell Biology, 6(4), 229–236.

    Article  CAS  Google Scholar 

  34. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annual Review of Biochemistry 70:81–120. doi:70/1/81 [pii]https://doi.org/10.1146/annurev.biochem.70.1.81.

  35. Loidl, P. (1994). Histone acetylation: Facts and questions. Chromosoma, 103(7), 441–449.

    Article  CAS  Google Scholar 

  36. Ishihara, M., Fedarko, N. S., & Conrad, H. E. (1986). Transport of heparan sulfate into the nuclei of hepatocytes. The Journal of Biological Chemistry, 261(29), 13575–13580.

    CAS  PubMed  Google Scholar 

  37. Richardson, T. P., Trinkaus-Randall, V., & Nugent, M. A. (2001). Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. Journal of Cell Science, 114(Pt 9), 1613–1623.

    CAS  PubMed  Google Scholar 

  38. Hsia, E., Richardson, T. P., & Nugent, M. A. (2003). Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. Journal of Cellular Biochemistry, 88(6), 1214–1225.

    Article  CAS  Google Scholar 

  39. Brockstedt, U., Dobra, K., Nurminen, M., & Hjerpe, A. (2002). Immunoreactivity to cell surface syndecans in cytoplasm and nucleus: Tubulin-dependent rearrangements. Experimental Cell Research, 274(2), 235–245. https://doi.org/10.1006/excr.2002.5477.

    Article  CAS  PubMed  Google Scholar 

  40. Buczek-Thomas, J. A., Hsia, E., Rich, C. B., Foster, J. A., & Nugent, M. A. (2008). Inhibition of histone acetyltransferase by glycosaminoglycans. Journal of Cellular Biochemistry, 105(1), 108–120. https://doi.org/10.1002/jcb.21803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nilsson, U., Johnsson, R., Fransson, L. A., Ellervik, U., & Mani, K. (2010). Attenuation of tumor growth by formation of antiproliferative glycosaminoglycans correlates with low acetylation of histone H3. Cancer Research, 70(9), 3771–3779. https://doi.org/10.1158/0008-5472.CAN-09-4331.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, L., & Sanderson, R. D. (2009). Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One, 4(3), e4947. https://doi.org/10.1371/journal.pone.0004947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Purushothaman, A., Hurst, D. R., Pisano, C., Mizumoto, S., Sugahara, K., & Sanderson, R. D. (2011). Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. The Journal of Biological Chemistry, 286(35), 30377–30383. https://doi.org/10.1074/jbc.M111.254789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelly, T., Miao, H. Q., Yang, Y., Navarro, E., Kussie, P., Huang, Y., MacLeod, V., Casciano, J., Joseph, L., Zhan, F., Zangari, M., Barlogie, B., Shaughnessy, J., & Sanderson, R. D. (2003). High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Research, 63(24), 8749–8756.

    CAS  PubMed  Google Scholar 

  45. Barash, U., Zohar, Y., Wildbaum, G., Beider, K., Nagler, A., Karin, N., Ilan, N., & Vlodavsky, I. (2014). Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia, 28, 2178–2187. https://doi.org/10.1038/leu.2014.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barash, U., Zohar, Y., Wildbaum, G., Beider, K., Nagler, A., Karin, N., Ilan, N., & Vlodavsky, I. (2014). Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia, 28(11), 2178–2187. https://doi.org/10.1038/leu.2014.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seidel, C., Borset, M., Turesson, I., Abildgaard, N., Sundan, A., & Waage, A. (1998). Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood, 91(3), 806–812.

    CAS  Google Scholar 

  48. Zhan, F., Hardin, J., Kordsmeier, B., Bumm, K., Zheng, M., Tian, E., Sanderson, R., Yang, Y., Wilson, C., Zangari, M., Anaissie, E., Morris, C., Muwalla, F., van Rhee, F., Fassas, A., Crowley, J., Tricot, G., Barlogie, B., & Shaughnessy, J., Jr. (2002). Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood, 99(5), 1745–1757.

    Article  CAS  Google Scholar 

  49. Borset, M., Hjorth-Hansen, H., Seidel, C., Sundan, A., & Waage, A. (1996). Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood, 88(10), 3998–4004.

    Article  CAS  Google Scholar 

  50. Hjertner, O., Torgersen, M. L., Seidel, C., Hjorth-Hansen, H., Waage, A., Borset, M., & Sundan, A. (1999). Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: A possible role for HGF in myeloma-associated osteolytic bone disease. Blood, 94(11), 3883–3888.

    Article  CAS  Google Scholar 

  51. Seidel, C., Borset, M., Hjertner, O., Cao, D., Abildgaard, N., Hjorth-Hansen, H., Sanderson, R. D., Waage, A., & Sundan, A. (2000). High levels of soluble syndecan-1 in myeloma-derived bone marrow: Modulation of hepatocyte growth factor activity. Blood, 96(9), 3139–3146.

    Article  CAS  Google Scholar 

  52. Ramani, V. C., Yang, Y., Ren, Y., Nan, L., & Sanderson, R. D. (2011). Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. The Journal of Biological Chemistry, 286(8), 6490–6499. https://doi.org/10.1074/jbc.M110.183277.

    Article  CAS  PubMed  Google Scholar 

  53. Yang, Y., Macleod, V., Bendre, M., Huang, Y., Theus, A. M., Miao, H. Q., Kussie, P., Yaccoby, S., Epstein, J., Suva, L. J., Kelly, T., & Sanderson, R. D. (2005). Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood, 105(3), 1303–1309.

    Article  CAS  Google Scholar 

  54. Yang, Y., Ren, Y., Ramani, V. C., Nan, L., Suva, L. J., & Sanderson, R. D. (2010). Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL. Cancer Research, 70(21), 8329–8338. https://doi.org/10.1158/0008-5472.CAN-10-2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masola, V., Bellin, G., Gambaro, G., & Onisto, M. (2018). Heparanase: A multitasking protein involved in extracellular matrix (ECM) Remodeling and intracellular events. Cell, 7(12). https://doi.org/10.3390/cells7120236.

  56. Purushothaman, A., Uyama, T., Kobayashi, F., Yamada, S., Sugahara, K., Rapraeger, A. C., & Sanderson, R. D. (2010). Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 115(12), 2449–2457. https://doi.org/10.1182/blood-2009-07-234757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nurcombe V, Cool SM (2007) Heparan sulfate control of proliferation and differentiation in the stem cell niche. Critical Reviews in Eukaryotic Gene Expression 17 (2):159–171. doi:31c5e2d111e631ad,4e9eaa466db6cc30 [pii].

  58. Beauvais DM, Rapraeger AC (2010) Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. Journal of Cell Science 123 (Pt 21):3796–3807. doi:https://doi.org/10.1242/jcs.067645.

  59. Rapraeger, A. C., Ell, B. J., Roy, M., Li, X., Morrison, O. R., Thomas, G. M., & Beauvais, D. M. (2013). Vascular endothelial-cadherin stimulates syndecan-1-coupled insulin-like growth factor-1 receptor and cross-talk between alphaVbeta3 integrin and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. The FEBS Journal, 280(10), 2194–2206. https://doi.org/10.1111/febs.12134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, H., Jin, H., & Rapraeger, A. C. (2015). Syndecan-1 and Syndecan-4 Capture epidermal growth factor receptor family members and the alpha3beta1 integrin via binding sites in their Ectodomains: NOVEL SYNSTATINS PREVENT KINASE CAPTURE AND INHIBIT alpha6beta4-INTEGRIN-DEPENDENT EPITHELIAL CELL MOTILITY. The Journal of Biological Chemistry, 290(43), 26103–26113. https://doi.org/10.1074/jbc.M115.679084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., Penco, S., Pisano, C., Carminati, P., Tortoreto, M., Zunino, F., Vlodavsky, I., Sanderson, R. D., & Yang, Y. (2011). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical Cancer Research, 17(6), 1382–1393. https://doi.org/10.1158/1078-0432.CCR-10-2476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beauvais, D. M., Jung, O., Yang, Y., Sanderson, R. D., & Rapraeger, A. C. (2016). Syndecan-1 (CD138) suppresses apoptosis in multiple myeloma by activating IGF1 receptor: Prevention by SynstatinIGF1R inhibits tumor growth. Cancer Research, 76(17), 4981–4993. https://doi.org/10.1158/0008-5472.CAN-16-0232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: Composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579. https://doi.org/10.1038/nri855.

    Article  CAS  PubMed  Google Scholar 

  64. Sanderson, R. D., Bandari, S. K., & Vlodavsky, I. (2017). Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biology. https://doi.org/10.1016/j.matbio.2017.10.007.

  65. Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49(3), 347–360. https://doi.org/10.1016/j.devcel.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  66. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288(14), 10093–10099. https://doi.org/10.1074/jbc.C112.444562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P., & David, G. (2015). Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Research, 25(4), 412–428. https://doi.org/10.1038/cr.2015.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. David, G., & Zimmermann, P. (2016). Heparanase tailors syndecan for exosome production. Molecular & Cellular Oncology, 3(3), e1047556. https://doi.org/10.1080/23723556.2015.1047556.

    Article  CAS  Google Scholar 

  69. Bandari, S. K., Purushothaman, A., Ramani, V. C., Brinkley, G. J., Chandrashekar, D. S., Varambally, S., Mobley, J. A., Zhang, Y., Brown, E. E., Vlodavsky, I., & Sanderson, R. D. (2018). Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 65, 104–118. https://doi.org/10.1016/j.matbio.2017.09.001.

    Article  CAS  PubMed  Google Scholar 

  70. Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. (2013). Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 17380–17385. https://doi.org/10.1073/pnas.1304266110.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Purushothaman, A., Bandari, S. K., Liu, J., Mobley, J. A., Brown, E. E., & Sanderson, R. D. (2016). Fibronectin on the surface of myeloma cell-derived Exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry, 291(4), 1652–1663. https://doi.org/10.1074/jbc.M115.686295.

    Article  CAS  PubMed  Google Scholar 

  72. Carpentier, M., Denys, A., Allain, F., & Vergoten, G. (2014). Molecular docking of heparin oligosaccharides with hep-II heparin-binding domain of fibronectin reveals an interplay between the different positions of sulfate groups. Glycoconjugate Journal, 31(2), 161–169. https://doi.org/10.1007/s10719-013-9512-8.

    Article  CAS  PubMed  Google Scholar 

  73. Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 200(4), 373–383. https://doi.org/10.1083/jcb.201211138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramani, V. C., Zhan, F., He, J., Barbieri, P., Noseda, A., Tricot, G., & Sanderson, R. D. (2016). Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget, 7(2), 1598–1607. https://doi.org/10.18632/oncotarget.6408.

    Article  PubMed  Google Scholar 

  75. Naggi, A., Casu, B., Perez, M., Torri, G., Cassinelli, G., Penco, S., Pisano, C., Giannini, G., Ishai-Michaeli, R., & Vlodavsky, I. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280(13), 12103–12113.

    Article  CAS  Google Scholar 

  76. Pala, D., Rivara, S., Mor, M., Milazzo, F. M., Roscilli, G., Pavoni, E., & Giannini, G. (2016). Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Glycobiology, 26(6), 640–654. https://doi.org/10.1093/glycob/cww003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants awarded to R.S. (CA138340 and CA211752) by the National Institutes of Health. The authors thank the many members of the Sanderson laboratory and collaborators that have contributed over the years to much of the knowledge reviewed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph D. Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purushothaman, A., Sanderson, R.D. (2020). Heparanase: A Dynamic Promoter of Myeloma Progression. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_12

Download citation

Publish with us

Policies and ethics