Skip to main content
Log in

Molecular docking of heparin oligosaccharides with Hep-II heparin-binding domain of fibronectin reveals an interplay between the different positions of sulfate groups

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Fibronectin is a major component of the extracellular matrix and serves as support for cell adhesion and migration. Heparin and heparan sulfates (HS) have been reported to be high-affinity ligands for fibronectin. The strongest heparin/HS-binding site, named Hep-II, is located in the C-terminal repeat units FN12-14 of fibronectin. Mutational studies of recombinant fibronectin fragments and elucidation of the X-ray crystallographic structure of Hep-II in complex with heparin allowed localizing the main heparin/HS-binding site in FN13 to two parallel amino acid clusters: R1697, R1698, R1700 and R1714, R1716, R1745. Heparin, which is more sulfated than HS, is a better ligand for fibronectin, indicating that the sulfate density is important for the interactions. However, other studies demonstrated that the position of sulfate groups is also critical for high-affinity binding of the polysaccharides to fibronectin. In the current work, we used molecular docking of Hep-II domain of fibronectin with a series of differently sulfated dodecasaccharides of heparin to determine the implication of each sulfate position in the interaction. By using this approach, we confirmed the implication of R1697, R1698, R1700 and R1714 and we identified other amino acids possibly involved in the interaction. We also confirmed a hierarchic involvement of sulfate position as follows: 2S >> 6S > NS. Interestingly, the formation of stable complexes required a mutual adaptation between Hep-II domain and oligosaccharides, which was different according to the pattern of sulfation. Finally, we demonstrated that 3-O-sulfation of heparin stabilized even more the complex with Hep-II by creating new molecular interactions. Collectively, our models point out the complexity of the molecular interactions between heparin/HS and fibronectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pankov, R., Yamada, K.M.: Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Woods, A., Couchman, J.R.: Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol. Biol. Cell 5, 183–192 (1994)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Petersen, T.E., Thøgersen, H.C., Skorstengaard, K., Vibe-Pedersen, K., Sahl, P., Sottrup-Jensen, L., Magnusson, S.: Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc. Natl. Acad. Sci. U. S. A. 80, 137–141 (1983)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pierschbacher, M.D., Ruoslahti, E.: Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc. Natl. Acad. Sci. U. S. A. 81, 5985–5988 (1984)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ruoslahti, E.: Fibronectin and its receptors. Annu. Rev. Biochem. 57, 375–413 (1988)

    Article  CAS  PubMed  Google Scholar 

  6. Humphries, M.J., Komoriya, A., Akiyama, S.K., Olden, K., Yamada, K.M.: Identification of two distinct regions of the type III connecting segment of human plasma fibronectin that promote cell type-specific adhesion. J. Biol. Chem. 262, 6886–6892 (1987)

    CAS  PubMed  Google Scholar 

  7. Sharma, A., Askari, J.A., Humphries, M.J., Jones, E.Y., Stuart, D.I.: Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin. EMBO J. 18, 1468–1479 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Pardo, A., Rostagno, A., Frangione, B.: Primary structure of human plasma fibronectin. Characterization of a 38 kDa domain containing the C-terminal heparin-binding site (Hep III site) and a region of molecular heterogeneity. Biochem. J. 241, 923–928 (1987)

    CAS  PubMed  Google Scholar 

  9. Kishore, R., Samuel, M., Khan, M.Y., Hand, J., Frenz, D.A., Newman, S.A.: Interaction of the NH2-terminal domain of fibronectin with heparin. Role of the omega-loops of the type I modules. J. Biol. Chem. 272, 17078–17085 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Benecky, M.J., Kolvenbach, C.G., Amrani, D.L., Mosesson, M.W.: Evidence that binding to the carboxyl-terminal heparin-binding domain (Hep II) dominates the interaction between plasma fibronectin and heparin. Biochemistry 27, 7565–7571 (1988)

    Article  CAS  PubMed  Google Scholar 

  11. Ingham, K.C., Brew, S.A., Atha, D.A.: Interaction of heparin with fibronectin and isolated fibronectin domains. Biochem. J. 272, 605–611 (1990)

    CAS  PubMed  Google Scholar 

  12. Lin, H., Lal, R., Clegg, D.O.: Imaging and mapping heparin-binding sites on single fibronectin molecules with atomic force microscopy. Biochemistry 39, 3192–3196 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Mostafavi-Pour, Z., Askari, J.A., Whittard, J.D., Humphries, M.J.: Identification of a novel heparin-binding site in the alternatively spliced IIICS region of fibronectin: roles of integrins and proteoglycans in cell adhesion to fibronectin splice variants. Matrix Biol. 20, 63–73 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Gui, L., Wojciechowski, K., Gildner, C.D., Nedelkovska, H., Hocking, D.C.: Identification of the heparin-binding determinants within fibronectin repeat III1: role in cell spreading and growth. J. Biol. Chem. 46, 34816–34825 (2006)

    Article  Google Scholar 

  15. Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Capila, I., Linhardt, R.J.: Heparin-protein interactions. Angew. Chem., Int. Ed. Engl. 41, 391–412 (2002)

    Article  Google Scholar 

  17. Ori, A., Wilkinson, M.C., Fernig, D.G.: The heparanome and regulation of cell function: structures, functions and challenges. Front. Biosci. 13, 4309–4338 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Sugahara, K., Kitagawa, H.: Heparin and heparan sulfate biosynthesis. IUBMB Life 54, 163–175 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Shriver, Z., Capila, I., Venkataraman, G., Sasisekharan, R.: Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handb. Exp. Pharmacol. 207, 159–176 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Barkalow, F.J., Schwarzbauer, J.E.: Localization of the major heparin-binding site in fibronectin. J. Biol. Chem. 266, 7812–7818 (1991)

    CAS  PubMed  Google Scholar 

  21. Busby, T.F., Argraves, W.S., Brew, S.A., Pechik, I., Gilliland, G.L., Ingham, K.C.: Heparin binding by fibronectin module III-13 involves six discontinuous basic residues brought together to form a cationic cradle. J. Biol. Chem. 270, 18558–18562 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. Sachchidanand, Lequin, O., Staunton, D., Mulloy, B., Forster, M.J., Yoshida, K., Campbell, I.D.: Mapping the heparin-binding site on the 13-14F3 fragment of fibronectin. J. Biol. Chem. 277, 50629–50635 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Ingham, K.C., Brew, S.A., Migliorini, M.M., Busby, T.F.: Heparin binding by fibronectin module III-13 involves six discontinuous basic residues brought together to form a cationic cradle. Biochemistry 32, 12548–12553 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Lyon, M., Rushton, G., Askari, J.A., Humphries, M.J., Gallagher, J.T.: Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin. J. Biol. Chem. 275, 4599–4606 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Mahalingam, Y., Gallagher, J.T., Couchman, J.R.: Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J. Bio. Chem. 282, 3221–3230 (2007)

    Article  CAS  Google Scholar 

  26. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser, I.A.: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. U. S. A. 89, 2195–2199 (1992)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ausiello, G., Cesareni, G., Helmer-Citterich, M.: ESCHER: a new docking procedure applied to the reconstruction of protein tertiary structure. Proteins 28, 556–567 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. Palma, P.N., Krippahl, L., Wampler, J.E., Moura, J.: BiGGER: a new (soft) docking algorithm for predicting protein interactions. J. Proteins 39, 372–384 (2000)

    Article  CAS  Google Scholar 

  29. Ritchie, D.W., Kozakov, D., Vajda, S.: Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics 24, 1865–1873 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Hex’s home page: http://www.loria.fr (~ ritchied/hex) 2013. Accessed 20 April 2013

  31. Jones, G., Willet, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. Gandhi, N.S., Freeman, C., Parish, C.R., Mancera, R.L.: Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase). Glycobiology 22, 35–55 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. Vergoten, G., Mazur, I., Lagant, P., Michalski, J.C., Zanetta, J.P.: The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie 85, 65–73 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Lagant, P., Nolde, D., Stote, R., Vergoten, G., Karplus, M.: Increasing normal modes analysis accuracy: the SPASIBA spectroscopic force field introduced into the CHARMM program. J. Phys. Chem. 108, 4019–4029 (2004)

    Article  CAS  Google Scholar 

  35. Meziane-Tani, M., Lagant, P., Semmound, A., Vergoten, G.: The SPASIBA force field for chondroitin sulfate: vibrational analysis of D-glucuronic and N-acetyl-D-galactosamine 4-sulfate sodium salts. J. Phys. Chem. 110, 11359–11370 (2006)

    Article  CAS  Google Scholar 

  36. Homans, S.W.: A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry 29, 9110–9118 (1990)

    Article  CAS  PubMed  Google Scholar 

  37. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Halgren, T.A.: MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem. 20, 730–748 (1999)

    Article  CAS  Google Scholar 

  39. Sapay, N., Cabannes, E., Petitou, M., Imberty, A.: Molecular modeling of the interaction between heparan sulfate and cellular growth factors: bringing pieces together. Glycobiology 21, 1181–1193 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Raghuraman, A., Mosier, P.D., Desai, U.R.: Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). J. Med. Chem. 49, 3553–3562 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Raghuraman, A., Mosier, P.D., Desai, U.R.: Understanding dermatan sulfate-heparin cofactor II interaction through virtual library screening. ACS Med. Chem. Lett. 1, 281–285 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gandhi, N.S., Coombe, D.R., Mancera, R.L.: Platelet endothelial cell adhesion molecule 1 (PECAM-1) and its interactions with glycosaminoglycans: 1. Molecular modeling studies. Biochemistry 47, 4851–4862 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Mosier, P.D., Krishnasamy, C., Kellogg, G.E., Desai, U.R.: PLoS One (2012) doi: 7/e48632

  44. Samsonov, S.A., Teyra, J., Pisabarro, M.T.: Docking glycosaminoglycans to proteins: analysis of solvent inclusion. J. Comput. Aided Mol. Des. 25, 477–489 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Carpentier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpentier, M., Denys, A., Allain, F. et al. Molecular docking of heparin oligosaccharides with Hep-II heparin-binding domain of fibronectin reveals an interplay between the different positions of sulfate groups. Glycoconj J 31, 161–169 (2014). https://doi.org/10.1007/s10719-013-9512-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9512-8

Keywords

Navigation