Skip to main content

Advertisement

Log in

New Innovations in the Treatment of PJI and Biofilms—Clinical and Preclinical Topics

  • Prosthetic Joint Infection (S Nodzo and N Frisch, section editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement. A main source for antibiotic tolerance and treatment failure is bacterial production of biofilm—a resilient barrier against antibiotics, immune system, and mechanical debridement. The purpose of this review is to explore some novel approaches to treat PJI and biofilm-related infections.

Recent Findings

Innovative treatment strategies of bacterial and biofilm infections revolve around (a) augmenting current therapies, such as improving the delivery and efficiency of conventional antibiotics and enhancing the efficacy of antiseptics and (b) administrating completely new therapeutic modalities, such as using immunotherapy, nanoparticles, lytic bacteriophages, photodynamic therapy, novel antibiotics, and antimicrobial peptides.

Summary

Several promising treatment strategies for PJI are available to be tested further. The next requirement for most of the novel treatments is reproducing their effects in clinically representative animal models of PJI against clinical isolates of relevant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major Importance

  1. Norman-Taylor FH, Palmer CR, Villar RN. Quality-of-life improvement compared after hip and knee replacement. J Bone Joint Surg Br Vol. 1996;78(1):74.

    Article  CAS  Google Scholar 

  2. Martinez-Cano JP, Herrera-Escobar JP, Arango Gutierrez AS, Sanchez Vergel A, Martinez-Rondanelli A. Prospective quality of life assessment after hip and knee arthroplasty: short- and mid-term follow-up results. Arthroplast Today. 2017;3(2):125.

    Article  PubMed  Google Scholar 

  3. Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic joint infection. Lancet (Lond Engl). 2016;387(10016):386.

    Article  Google Scholar 

  4. Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res. 2013;471(2):510.

    Article  PubMed  Google Scholar 

  5. Lamagni T. Epidemiology and burden of prosthetic joint infections. J Antimicrob Chemother. 2014;69(Suppl 1):i5.

    Article  PubMed  CAS  Google Scholar 

  6. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplast. 2012;27(8 Suppl):61.

    Article  Google Scholar 

  7. Alp E, Cevahir F, Ersoy S, Guney A. Incidence and economic burden of prosthetic joint infections in a university hospital: a report from a middle-income country. J Infect Public Health. 2016;9(4):494.

    Article  PubMed  Google Scholar 

  8. Ciofu O, Rojo-Molinero E, Macia MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS: Acta Pathol Microbiol Immunol Scand. 2017;125(4):304.

    Article  Google Scholar 

  9. Marculescu C, Berbari E, Hanssen AD, Steckelberg J, Harmsen S, Mandrekar J, et al. Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis. 2006;42(4):471.

    Article  PubMed  CAS  Google Scholar 

  10. Urish KL, Bullock AG, Kreger AM, Shah NB, Jeong K, Rothenberger SD. A multicenter study of irrigation and debridement in total knee arthroplasty periprosthetic joint infection: treatment failure is high. J Arthroplast. 2018;33(4):1154.

    Article  Google Scholar 

  11. Klement MR, Siddiqi A, Rock JM, Chen AF, Bolognesi MP, Seyler TM. Positive blood cultures in periprosthetic joint infection decrease rate of treatment success. J Arthroplast. 2018;33(1):200.

    Article  Google Scholar 

  12. Yoon HK, Cho SH, Lee DY, Kang BH, Lee SH, Moon DG, et al. Review of the literature on culture-negative periprosthetic joint infection: epidemiology, diagnosis and treatment. Knee Surg Relat Res. 2017;29(3):155.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Wang Q, Shen H, Zhang X. Comparable outcome of culture-negative and culture-positive periprosthetic hip joint infection for patients undergoing two-stage revision. Int Orthop. 2018;42(3):469.

    Article  PubMed  Google Scholar 

  14. Dibartola AC, Swearingen MC, Granger JF, Stoodley P, Dusane DH. Biofilms in orthopedic infections: a review of laboratory methods. APMI: Acta Pathol Microbiol Immunol Scand. 2017;125(4):418.

    Article  Google Scholar 

  15. •• Swearingen MC, DiBartola AC, Dusane D, Granger J, Stoodley P. 16S rRNA analysis provides evidence of biofilms on all components of three infected periprosthetic knees including permanent braided suture. Pathog Dis 2016;74(7). This paper compared conventional bacterial culture techniques to 16S rRNA analysis of samples taken from patients undergoing revision knee replacement for infection. 16S sequencing identified multiple bacteria types on implant and suture material surfaces, demonstrating that the prevalence of polymicrobial infection is underestimated and that biofilm can form on all foreign materials inside the patient.

  16. Huang Z, Wu Q, Fang X, Li W, Zhang C, Zeng H, Wang Q, Lin J, Zhang W. Comparison of culture and broad-range polymerase chain reaction methods for diagnosing periprosthetic joint infection: analysis of joint fluid, periprosthetic tissue, and sonicated fluid. Int Orthop. 2018.

  17. Rothenberg AC, Wilson AE, Hayes JP, O'Malley MJ, Klatt BA. Sonication of arthroplasty implants improves accuracy of periprosthetic joint infection cultures. Clin Orthop Relat Res. 1827;475(7):2017.

    Google Scholar 

  18. Tani S, Lepetsos P, Stylianakis A, Vlamis J, Birbas K, Kaklamanos I. Superiority of the sonication method against conventional periprosthetic tissue cultures for diagnosis of prosthetic joint infections. Eur J Orthop Surg Traumatol. 2018;28(1):51.

    Article  PubMed  Google Scholar 

  19. Janz V, Trampuz A, Perka CF, Wassilew GI. Reduced culture time and improved isolation rate through culture of sonicate fluid in blood culture bottles. Technol Health Care. 2017;25(4):635.

    Article  PubMed  Google Scholar 

  20. Clauss M. CORR insights((R)): sonication of arthroplasty implants improves accuracy of periprosthetic joint infection cultures. Clin Orthop Relat Res. 1837;475(7):2017.

    Google Scholar 

  21. Wilson PD Jr, Salvati EA, Blumenfeld EL. The problem of infection in total prosthetic arthroplasty of the hip. Surg Clin North Am. 1975;55(6):1431.

    Article  PubMed  Google Scholar 

  22. Anagnostakos K, Wilmes P, Schmitt E, Kelm J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop. 2009;80(2):193.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bertazzoni Minelli E, Benini A, Samaila E, Bondi M, Magnan B. Antimicrobial activity of gentamicin and vancomycin combination in joint fluids after antibiotic-loaded cement spacer implantation in two-stage revision surgery. J Chemother (Florence, Italy). 2015;27(1):17.

    Article  CAS  Google Scholar 

  24. Edelstein AI, Okroj KT, Rogers T, Della Valle CJ, Sporer SM. Nephrotoxicity after the treatment of periprosthetic joint infection with antibiotic-loaded cement spacers. J Arthroplasty. 2018.

  25. Berliner ZP, Mo AZ, Porter DA, Grossman JM, Hepinstall MS, Cooper HJ, et al. In-hospital acute kidney injury after TKA revision with placement of an antibiotic cement spacer. J Arthroplast. 2017;

  26. Nelson CL, Jones RB, Wingert NC, Foltzer M, Bowen TR. Sonication of antibiotic spacers predicts failure during two-stage revision for prosthetic knee and hip infections. Clin Orthop Relat Res. 2014;472(7):2208.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schmolders J, Hischebeth GT, Friedrich MJ, Randau TM, Wimmer MD, Kohlhof H, et al. Evidence of MRSE on a gentamicin and vancomycin impregnated polymethyl-methacrylate (PMMA) bone cement spacer after two-stage exchange arthroplasty due to periprosthetic joint infection of the knee. BMC Infect Dis. 2014;14:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Anagnostakos K, Furst O, Kelm J. Antibiotic-impregnated PMMA hip spacers: current status. Acta Orthop. 2006;77(4):628.

    Article  PubMed  Google Scholar 

  29. Erivan R, Lecointe T, Villatte G, Mulliez A, Descamps S, Boisgard S. Complications with cement spacers in 2-stage treatment of periprosthetic joint infection on total hip replacement. Orthop Traumatol Surg Res: OTSR. 2017.

  30. Armstrong MD, Carli AV, Abdelbary H, Poitras S, Lapner P, Beaule PE. Tertiary care centre adherence to unified guidelines for management of periprosthetic joint infections: a gap analysis. Can J Surg Journal canadien de chirurgie. 2018;61(1):34.

    Article  PubMed  Google Scholar 

  31. Ruder JA, Springer BD. Treatment of periprosthetic joint infection using antimicrobials: dilute povidone-iodine lavage. J Bone Joint Infect. 2017;2(1):10.

    Article  Google Scholar 

  32. Frisch NB, Kadri OM, Tenbrunsel T, Abdul-Hak A, Qatu M, Davis JJ. Intraoperative chlorhexidine irrigation to prevent infection in total hip and knee arthroplasty. Arthroplast Today. 2017;3(4):294.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Riesgo AM, Park BK, Herrero CP, Yu S, Schwarzkopf R, Iorio R. Vancomycin povidone-iodine protocol improves survivorship of periprosthetic joint infection treated with irrigation and debridement. J Arthroplast. 2018;33(3):847.

    Article  Google Scholar 

  34. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant–related staphylococcal infections: a randomized controlled trial. JAMA. 1998;279(19):1537.

    Article  PubMed  CAS  Google Scholar 

  35. O'Reilly T, Kunz S, Sande E, Zak O, Sande M, Täuber MG. Relationship between antibiotic concentration in bone and efficacy of treatment of staphylococcal osteomyelitis in rats: azithromycin compared with clindamycin and rifampin. Antimicrob Agents Chemother. 1992;36(12):2693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Keating GM, Scott LJ. Moxifloxacin. Drugs. 2004;64(20):2347.

    Article  PubMed  CAS  Google Scholar 

  37. Joukhadar C, Stass H, Müller-Zellenberg U, Lackner E, Kovar F, Minar E, et al. Penetration of moxifloxacin into healthy and inflamed subcutaneous adipose tissues in humans. Antimicrob Agents Chemother. 2003;47(10):3099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Greimel F, Scheuerer C, Gessner A, Simon M, Kalteis T, Grifka J, et al. Efficacy of antibiotic treatment of implant-associated Staphylococcus aureus infections with moxifloxacin, flucloxacillin, rifampin, and combination therapy: an animal study. Drug Des Devel Ther. 2017;11:1729.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koziel J, Maciag-Gudowska A, Mikolajczyk T, Bzowska M, Sturdevant DE, Whitney AR, et al. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One. 2009;4(4):e5210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527(7578):323.

    Article  PubMed  CAS  Google Scholar 

  41. Surewaard BG, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, Omri A, Yates RM, Kubes P. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med : JEM. 2016 20160334.

  42. •• Zaidi S, Misba L, Khan AU. Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine. 2017;13(7):2281. This paper provides an up to date, thorough overview of the possible applications of nano-therapeutics for infectious disease, summarizing advantages and limitations of nanoparticle-based platforms.

    Article  PubMed  CAS  Google Scholar 

  43. Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano. 2016;10(4):4779.

    Article  PubMed  CAS  Google Scholar 

  44. Bazzaz BSF, Khameneh B, Zarei H, Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb Pathog. 2016;93:137.

    Article  CAS  Google Scholar 

  45. Chetoni P, Burgalassi S, Monti D, Tampucci S, Tullio V, Cuffini AM, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm. 2016;109:214.

    Article  PubMed  CAS  Google Scholar 

  46. Hippler R, Kersten H, Schmidt M, Schoenbach KH. Low temperature plasmas: fundamentals, technologies and techniques: Wiley-VCH. 2008.

  47. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm. 2001;226(1–2):1.

    Article  PubMed  CAS  Google Scholar 

  48. Moreau M, Orange N, Feuilloley M. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26(6):610.

    Article  PubMed  CAS  Google Scholar 

  49. Laroussi M, Lu X, Keidar M. Perspective: the physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J Appl Phys. 2017;122(2):020901.

    Article  CAS  Google Scholar 

  50. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60(Pt 1):75.

    Article  PubMed  CAS  Google Scholar 

  51. Taha M, Kalab M, Yi QL, Landry C, Greco-Stewart V, Brassinga AK, et al. Biofilm-forming skin microflora bacteria are resistant to the bactericidal action of disinfectants used during blood donation. Transfusion. 2014;54(11):2974.

    Article  PubMed  CAS  Google Scholar 

  52. Horner C, Mawer D, Wilcox M. Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother. 2012;67(11):2547.

    Article  PubMed  CAS  Google Scholar 

  53. Gupta TT, Karki SB, Matson JS, Gehling DJ, Ayan H. Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. Biomed Res Int. 2017;2017:6085741.

    PubMed  PubMed Central  Google Scholar 

  54. Brade KD, Rybak JM, Rybak MJ. Oritavancin: a new lipoglycopeptide antibiotic in the treatment of Gram-positive infections. Infect Dis Ther. 2016;5(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhanel GG, Schweizer F, Karlowsky JA. Oritavancin: mechanism of action. Clin Infect Dis. 2012;54(suppl_3):S214.

    Article  PubMed  CAS  Google Scholar 

  56. Lehoux D, Ostiguy V, Cadieux C, Malouin M, Belanger O, Far AR, et al. Oritavancin pharmacokinetics and bone penetration in rabbits. Antimicrob Agents Chemother. 2015;59(10):6501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Crotty MP, Krekel T, Burnham C-AD, Ritchie DJ. New gram-positive agents: the next generation of oxazolidinones and lipoglycopeptides. J Clin Microbiol 54(9): 2225, 2016.

  58. Dunne MW, Puttagunta S, Sprenger CR, Rubino C, Van Wart S, Baldassarre J. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob Agents Chemother 59(4): 1849, 2015.

  59. Fernández J, Greenwood-Quaintance KE, Patel R. In vitro activity of dalbavancin against biofilms of staphylococci isolated from prosthetic joint infections. Diagn Microbiol Infect Dis. 2016;85(4):449.

    Article  PubMed  CAS  Google Scholar 

  60. Barnea Y, Lerner A, Aizic A, Navon-Venezia S, Rachi E, Dunne MW, et al. Efficacy of dalbavancin in the treatment of MRSA rat sternal osteomyelitis with mediastinitis. J Antimicrob Chemother. 2015;71(2):460.

    Article  PubMed  CAS  Google Scholar 

  61. Yang Y, Qian M, Yi S, Liu S, Li B, Yu R, et al. Monoclonal antibody targeting staphylococcus aureus surface protein A (SasA) protect against staphylococcus aureus sepsis and peritonitis in mice. PLoS One. 2016;11(2):e0149460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Varshney AK, Kuzmicheva GA, Lin J, Sunley KM, Bowling RA Jr, Kwan T-Y, et al. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One. 2018;13(1):e0190537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, et al. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthcare Mater. 2016;5(19):2545.

    Article  CAS  Google Scholar 

  64. Qayyum S, Khan AU. Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles. IET Nanobiotechnol. 2016;10(5):349.

    Article  PubMed  Google Scholar 

  65. Kulshrestha S, Qayyum S, Khan AU. Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms. Microb Pathog. 2017;103:167.

    Article  PubMed  CAS  Google Scholar 

  66. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhao X, Wu H, Lu H, Li G, Huang QLAMP, A Database. Linking antimicrobial peptides. PLoS One. 2013;8(6):e66557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gao Y, Wu D, Wang L, Lin C, Ma C, Xi X, et al. Targeted modification of a novel amphibian antimicrobial peptide from Phyllomedusa tarsius to enhance its activity against MRSA and microbial biofilm. Front Microbiol. 2017;8:628.

    PubMed  PubMed Central  Google Scholar 

  69. Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, Rickard AH, et al. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol. 2015;6:617.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zapotoczna M, Forde É, Hogan S, Humphreys H, O’gara JP, Fitzgerald-Hughes D, Devocelle M, O’neill E. Eradication of Staphylococcus aureus biofilm infections using synthetic antimicrobial peptides. J Infect Dis 215(6): 975, 2017.

  71. de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 2015;22(2):196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mansour SC, Pletzer D, de la Fuente-Nunez C, Kim P, GYC C, Joo HS, et al. Bacterial abscess formation is controlled by the stringent stress response and can be targeted therapeutically. EBioMedicine. 2016;12:219.

    Article  PubMed  PubMed Central  Google Scholar 

  73. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. 2018;10(423):eaan4044.

    Article  PubMed  Google Scholar 

  74. Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777.

    Article  PubMed  CAS  Google Scholar 

  75. •• Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P. Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol. 2016;7:825. This paper demonstrates the capability of bacteriophages in clearing established biofilms on food surfaces. The described experiment performs successful against clinically relevant bacterial strains and has indirect application to periprosthetic joint infection research.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61(10):e00954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Akanda ZZ, Taha M, Abdelbary H. Current review—the rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res, 2017.

  78. Alves DR, Perez-Esteban P, Kot W, Bean J, Arnot T, Hansen LH, Enright MC, Jenkins ATA. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9(1): 61, 2016.

  79. Kumaran D, Taha M, Yi Q, Ramirez S, Diallo J-S, Carli A, et al. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol. 2018;9:127.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One. 2017;12(1):e0168615.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK, Nath G. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res. 2016;143(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Breyne K, Honaker RW, Hobbs Z, Richter M, Żaczek M, Spangler T, et al. Safety of a bovine-associated Staphylococcus aureus phage cocktail in a murine model of mastitis. Front Microbiol. 2017;8

  83. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther. 2005;2(1):1.

    Article  CAS  Google Scholar 

  84. •• Briggs T, Blunn G, Hislop S, Ramalhete R, Bagley C, McKenna D, Coathup M. Antimicrobial photodynamic therapy—a promising treatment for prosthetic joint infections. Lasers Med Sci. 2017;1. This paper involved a thorough evaluation of the photodynamic therapy (PDT) on the biofilms of four distinct clinical isolates of bacteria found in clinical periprosthetic joint infection. The study found that staphylococcus bacteria could be effectively removed using PDT in tested conditions/.

  85. Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, et al. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci. 2017;32(4):857.

    Article  PubMed  Google Scholar 

  86. Ehrensberger MT, Tobias ME, Nodzo SR, Hansen LA, Luke-Marshall NR, Cole RF, et al. Cathodic voltage-controlled electrical stimulation of titanium implants as treatment for methicillin-resistant Staphylococcus aureus periprosthetic infections. Biomaterials. 2015;41:97.

    Article  PubMed  CAS  Google Scholar 

  87. •• Nodzo SR, Tobias M, Ahn R, Hansen L, Luke-Marshall NR, Howard C, et al. Cathodic voltage-controlled electrical stimulation plus prolonged vancomycin reduce bacterial burden of a titanium implant-associated infection in a rodent model. Clin Orthop Relat Res. 2016;474(7):1668. This paper provides a clinically representative rodent model of shoulder periprosthetic joint infection, demonstrating the effectiveness of electrical stimulation combined with vancomycin in clearing infection on a shoulder implant with established biofilm.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto V. Carli.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prosthetic Joint Infection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M., Abdelbary, H., Ross, F.P. et al. New Innovations in the Treatment of PJI and Biofilms—Clinical and Preclinical Topics. Curr Rev Musculoskelet Med 11, 380–388 (2018). https://doi.org/10.1007/s12178-018-9500-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-018-9500-5

Keywords

Navigation