Skip to main content

Theory, Modeling, and Simulation of Magnetic Hybrid Nanoalloys

  • Living reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites
  • 16 Accesses

Abstract

Since prehistoric times, the frequent route for material development was by alloying of elements having complementary qualities to tailor their physical behavior. After investigating for decades on the effects of reduced size and dimensionality on single-element nanostructures, the research has been progressively shifted toward multicomponent nanoscale alloys. Nanostructured motifs created by alloying metals establishes novel structure-property relationships. The properties of nanoalloys are mainly dependent on their composition, temperature for preparation, etc. to get desirable material for specific industrial and scientific applications. Size-dependent phase diagram modeling allows the prediction of phase equilibria and possible alternative materials for real systems. Therefore, it has become inevitable to deeply understand the thermodynamic properties of magnetic nanoalloys. However, the presented chapter gives an insight on some of the theories for gaining knowledge over nanoalloys such as density functional theory (DFT). Furthermore, theoretical methods (e.g., CALPAD method) for phase diagram modeling are also discussed in the trailing sections. Applications of materials claim multifunctionality thus demanding design and development of responsive and adaptive materials where their exhibited properties progress in a controlled and predictable manner. In this context, magnetic transition metals show various interesting possibilities that are based on theoretical and experimental research activities. Therefore, understanding the magnetic behavior of alloys at nanoscale would probably leads in designing of novel magnetic and electronic components and hence opens new pathway toward more advanced technological applications. This chapter discusses fundamental theoretical and modeling perspective of magnetic hybrid nanoalloys to tailor challenges and achievements of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguado A (2020) Modeling the electronic and geometric structure of nanoalloys. In: Nanoalloys. Elsevier, pp 75–113

    Chapter  Google Scholar 

  • Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Olea-Mejía OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog Nat Sci: Mate Int 24(4):321–328

    Article  CAS  Google Scholar 

  • Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K et al (2009) FactSage thermochemical software and databases—recent developments. Calphad 33(2):295–311

    Article  CAS  Google Scholar 

  • Baskes MI (1997) Determination of modified embedded atom method parameters for nickel. Mater Chem Phys 50(2):152–158

    Article  CAS  Google Scholar 

  • Behrens S, Bönnemann H, Matoussevitch N, Gorschinski A, Dinjus E, Habicht W et al (2006) Surface engineering of Co and FeCo nanoparticles for biomedical application. J Phys Condens Matter 18(38):S2543

    Article  CAS  Google Scholar 

  • Bozzolo G, Ferrante J, Noebe RD, Good B, Honecy FS, Abel P (1999) Surface segregation in multicomponent systems: modeling of surface alloys and alloy surfaces. Comput Mater Sci 15(2):169–195

    Article  CAS  Google Scholar 

  • Brenner JR, Harkness JBL, Knickelbein MB, Krumdick GK, Marshall CL (1997) Microwave plasma synthesis of carbon-supported ultrafine metal particles. Nanostruct Mater 8(1):1–17

    Article  CAS  Google Scholar 

  • Cacciamani G (2016) An introduction to the calphad method and the compound energy formalism (CEF). Tecnologia em Metalurgia, Materiais e Mineração 13(1):16–24

    Article  CAS  Google Scholar 

  • Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA et al (2009) PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33(2):328–342

    Article  CAS  Google Scholar 

  • Carter GC (ed) (1978) Applications of phase diagrams in metallurgy and ceramics: proceedings of a workshop held at the National Bureau of standards, Gaithersburg, Maryland, January 10–12, 1977, vol 1. Department of Commerce, National Bureau of Standards, Institute for Materials Research

    Google Scholar 

  • Chaubey GS, Barcena C, Poudyal N, Rong C, Gao J, Sun S, Liu JP (2007) Synthesis and stabilization of FeCo nanoparticles. J Am Chem Soc 129(23):7214–7215

    Article  CAS  Google Scholar 

  • Cheng D, Wang W (2012) Nanoscale 4:2408–2415

    Google Scholar 

  • Cheng D, Qiu X, Yu H (2014) Phys Chem Chem Phys 16:20377–20381

    Google Scholar 

  • Cool T, Bartol A, Kasenga M, Modi K, García RE (2010) Gibbs: phase equilibria and symbolic computation of thermodynamic properties. Calphad 34(4):393–404

    Google Scholar 

  • Conte AM, Fabris S, Baroni S (2008) Properties of Pt-supported Co nanomagnets from relativistic density functional theory calculations. Phys Rev B 78(1):014416

    Google Scholar 

  • Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin AM (2002) MTDATA-thermodynamic and phase equilibrium software from the national physical laboratory. Calphad 26(2):229–271

    Article  CAS  Google Scholar 

  • de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals, transition metals alloys. North-Holland, Amsterdam

    Google Scholar 

  • Dirac PAM (1981) The principles of quantum mechanics, vol No. 27. Oxford university press

    Google Scholar 

  • Dorantes-Dávila J, Pastor GM (2013) Nanoalloys; Calvo, F. Eds

    Google Scholar 

  • Du A (2016) In silico engineering of graphene-based van der Waals heterostructured nanohybrids for electronics and energy applications. Wiley Interdiscip Rev: Comput Mol Sci 6(5):551–570

    CAS  Google Scholar 

  • Eriksson G (1975) SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems. Chem Scripta 8:100–103

    CAS  Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910

    Google Scholar 

  • González I, De Jesus JC, de Navarro CU, García M (2010) Effect of Cu on Ni nanoparticles used for the generation of carbon nanotubes by catalytic cracking of methane. Catal Today 149(3–4):352–357

    Article  CAS  Google Scholar 

  • Guo J, Wang X, Miao P, Liao X, Zhang W, Shi B (2012) One-step seeding growth of controllable Ag@ Ni core–shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption. J Mater Chem 22(24):11933–11942

    Article  CAS  Google Scholar 

  • Hafner J, Wolverton C, Ceder G (2006) Toward computational materials design: the impact of density functional theory on materials research. MRS Bull 31(9):659–668

    Article  Google Scholar 

  • Han X, Zhou R, Lai G, Zheng X (2004) Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. Catal Today 93:433–437

    Article  CAS  Google Scholar 

  • Henglein A, Brancewicz C (1997) Absorption spectra and reactions of colloidal bimetallic nanoparticles containing mercury. Chem Mater 9(10):2164–2167

    Article  CAS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Article  Google Scholar 

  • Ikeda Y, Grabowski B, Körmann F (2019) Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Mater Charact 147:464–511

    Google Scholar 

  • Jäger M, Schäfer R, Johnston RL (2018) First principles global optimization of metal clusters and nanoalloys. Adv Phys: X 3(1):1516514

    Google Scholar 

  • Jiang ZY, Lee KH, Li ST, Chu SY (2006) Structures and charge distributions of cationic and neutral Cu n− 1 Ag clusters (n= 2–8). Phys Rev B 73(23):235423

    Article  CAS  Google Scholar 

  • Kattner UR (2016) The Calphad method and its role in material and process development. Tecnologia em metalurgia, materiais e mineracao 13(1):3

    Article  CAS  Google Scholar 

  • Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. With special reference to refractory metals

    Google Scholar 

  • Kaufman L, Cohen M (1956) The martensitic transformation in the iron-nickel system. JOM 8(10):1393–1401

    Article  CAS  Google Scholar 

  • Klein KL, Melechko AV, Rack PD, Fowlkes JD, Meyer HM, Simpson ML (2005) Cu–Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers. Carbon 43(9):1857–1863

    Article  CAS  Google Scholar 

  • Kozeschnik E, Buchmayr B (2001) MatCalc–A simulation tool for multicomponent thermodynamics, diffusion and phase transformation kinetics. In: Mathematical modelling of weld phenomena. Institute of Materials, London, pp 349–361

    Google Scholar 

  • Kroupa A, Káňa T, Buršík J, Zemanová A, Å ob M (2015) Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni–Sn. Phys Chem Chem Phys 17(42):28200–28210

    Article  CAS  Google Scholar 

  • Li W, Chen F (2013) A density functional theory study of structural, electronic, optical and magnetic properties of small ag–cu nanoalloys. J Nanopart Res 15(7):1–14

    Google Scholar 

  • Liu GL, Niu T, Cao A, Geng YX, Zhang Y, Liu Y (2016) The deactivation of Cu–Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas. Fuel 176:1–10

    Article  CAS  Google Scholar 

  • Lukas HL, Henig ET, Zimmermann B (1977) Optimization of phase diagrams by a least squares method using simultaneously different types of data. Calphad 1(3):225–236

    Article  CAS  Google Scholar 

  • Mahl D, Diendorf J, Ristig S, Greulich C, Li ZA, Farle M et al (2012) Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action. J Nanopart Res 14(10):1–13

    Article  CAS  Google Scholar 

  • Martin RM (2020) Electronic structure: basic theory and practical methods. Cambridge University Press

    Book  Google Scholar 

  • Marzari N (2006) Realistic modeling of nanostructures using density functional theory. MRS Bull 31(9):681–687

    Article  CAS  Google Scholar 

  • Meijering JL (1957) Calculation of the nickel-chromium-copper phase diagram from binary data. Acta Metall 5(5):257–264

    Article  CAS  Google Scholar 

  • Nagai R, Akashi R, Sasaki S, Tsuneyuki S (2018) Neural-network Kohn-Sham exchange-correlation potential and its out-of-training transferability. J Chem Phys 148(24):241737

    Article  CAS  Google Scholar 

  • Niessen AK, Miedema AR, De Boer FR, Boom R (1988) Enthalpies of formation of liquid and solid binary alloys based on 3d metals: IV. Alloys of cobalt. Physica B+C 151(3):401–432

    Article  CAS  Google Scholar 

  • Otiz R, Liu ZK (2015) Pycalphad: open-source software for computational thermodynamics. Presented at MS&T’15; Columbus, OH

    Google Scholar 

  • Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Ranjani M, Sathishkumar Y, Lee YS, Yoo DJ, Kim AR (2015) Ni–Co alloy nanostructures anchored on mesoporous silica nanoparticles for non-enzymatic glucose sensor applications. RSC Adv 5(71):57804–57814

    Google Scholar 

  • Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116(16):7401–7402

    Google Scholar 

  • Roozmeh SE, Mohseni SM, Tehranchi MM (2009) Study of magnetoimpedance effect of Co-based amorphous ribbons after current annealing at various kinds of ambient pressure. J Non-Cryst Solids 355(52–54):2653–2656

    Article  CAS  Google Scholar 

  • Rohrmann U, Schwerdtfeger P, Schäfer R (2014) Atomic domain magnetic nanoalloys: interplay between molecular structure and temperature dependent magnetic and dielectric properties in manganese doped tin clusters. Phys Chem Chem Phys 16(43):23952–23966

    Google Scholar 

  • Sahoo S, Hucht A, Gruner ME, Rollmann G, Entel P, Postnikov A et al (2010) Magnetic properties of small Pt-capped Fe, Co, and Ni clusters: A density functional theory study. Phys Rev B 82(5):054418

    Article  CAS  Google Scholar 

  • Saunders N, Guo UKZ, Li X, Miodownik AP, Schillé JP (2003) Using JMatPro to model materials properties and behavior. JOM 55(12):60–65

    Article  CAS  Google Scholar 

  • Saw ET, Oemar U, Tan XR, Du Y, Borgna A, Hidajat K, Kawi S (2014) Bimetallic Ni–Cu catalyst supported on CeO2 for high-temperature water–gas shift reaction: methane suppression via enhanced CO adsorption. J Catal 314:32–46

    Article  CAS  Google Scholar 

  • Schmitz GJ, Böttger B, Apel M (2015) Microstructure modeling in ICME settings. In: Proceedings of the 3rd world congress on integrated computational materials engineering (ICME 2015). Springer, Cham, pp 165–172

    Google Scholar 

  • Senapati S, Srivastava SK, Singh SB, Mishra HN (2012) Magnetic Ni/Ag core–shell nanostructure from prickly Ni nanowire precursor and its catalytic and antibacterial activity. J Mater Chem 22(14):6899–6906

    Article  CAS  Google Scholar 

  • Shi PF, Engström A, Sundman B, Ã…gren J (2011) Thermodynamic calculations and kinetic simulations of some advanced materials. In: Materials science forum, vol 675. Trans Tech Publications Ltd, pp 961–974

    Google Scholar 

  • Shobu K (2009) CaTCalc: new thermodynamic equilibrium calculation software. Calphad 33(2):279–287

    Article  CAS  Google Scholar 

  • Spencer PJ (2008) A brief history of CALPHAD. Calphad 32(1):1–8

    Article  CAS  Google Scholar 

  • Sundman B, Kattner UR, Palumbo M, Fries SG (2015) OpenCalphad-a free thermodynamic software. Integr Mater Manuf Innov 4(1):1–15

    Google Scholar 

  • Torigoe K, Esumi K (1993) Preparation of bimetallic silver-palladium colloids from silver (I) bis (oxalato) palladate (II). Langmuir 9(7):1664–1667

    Article  CAS  Google Scholar 

  • Toshima N, Lu P (1996) Synthesis and catalysis of colloidal dispersions of Pd/Ni bimetallic clusters. Chem Lett 25(9):729–730

    Article  Google Scholar 

  • Van Laar JJ (1908) Melting-point and freezing-point curves in binary systems, when the solid phase is a mixture of both components. Z Phys Chem 63

    Google Scholar 

  • Wang HY, Lua AC (2015) Methane decomposition using Ni–cu alloy nano-particle catalysts and catalyst deactivation studies. Chem Eng J 262:1077–1089

    Article  CAS  Google Scholar 

  • Wang Y, Toshima N (1997) Preparation of Pd− Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B 101(27):5301–5306

    Article  CAS  Google Scholar 

  • Xie R, Fan G, Yang L, Li F (2016) Hierarchical flower-like Co–Cu mixed metal oxide microspheres as highly efficient catalysts for selective oxidation of ethylbenzene. Chem Eng J 288:169–178

    Article  CAS  Google Scholar 

  • Yang Y, Zhao Z, Cui R, Wu H, Cheng D (2015) Structures, thermal stability, and chemical activity of crown-jewel-structured Pd–Pt nanoalloys. J Phys Chem C 119(20):10888–10895

    Article  CAS  Google Scholar 

  • Zhao Z, Li M, Cheng D, Zhu J (2014) Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters. Chem Phys 441:152–158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, R. (2022). Theory, Modeling, and Simulation of Magnetic Hybrid Nanoalloys. In: Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-34007-0_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34007-0_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34007-0

  • Online ISBN: 978-3-030-34007-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics