Skip to main content

Silicon Nanoparticles and Plants: Current Knowledge and Future Perspectives

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 41

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 41))

Abstract

The use of nanotechnology in agriculture is increasing at a phenomenal rate. It is, therefore, necessary to appreciate and elucidate the role of nanoparticles (NPs) in plant growth and development. Silicon is regarded as a ‘quasi-essential’ element for plants and regulates a range of physiological processes including germination, vegetative growth, photosynthesis and stress tolerance. It is, therefore, of importance to assess the effects of silicon nanoparticles (SNPs) on these physiological processes, as SNPs are considered more efficient than their bulk particles due to their small size and high surface area and reactivity. The present chapter deals with the role of SNPs in plant growth, photosynthesis and stress tolerance. Additionally, potential toxic effects of NPs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4(8):809–816

    Google Scholar 

  • Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A (2019) Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 139:1–10

    Article  CAS  PubMed  Google Scholar 

  • Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem 127:152–160

    Article  CAS  PubMed  Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. For Res Pap 76(4):350–359

    Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol 16(3):25–29

    Article  CAS  Google Scholar 

  • Bagchi M, Moriyama H, Shahidi F (2012) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley, New York

    Google Scholar 

  • Bao-shan L, Chun-hui L, Li-jun F, Shu-chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15(2):138–140

    Article  Google Scholar 

  • Bassett CL (2013) Water use and drought response in cultivated and wild apples. Abiotic stress-plant responses and applications in agriculture, pp 249–275

    Google Scholar 

  • Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116(12):1983–1994

    Article  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Sci Innov Discov 2(1):21–36

    Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos PS, nia Quartin V, chicho Ramalho J, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160(3):283–292

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Genetic engineering. Springer, Boston, pp 141–177

    Chapter  Google Scholar 

  • Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369

    Article  CAS  PubMed  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100(7):1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva GH, Monteiro RTR (2017) Toxicity assessment of silica nanoparticles on Allium cepa. Ecotoxicol Environ Contam 12(1):25–31

    Google Scholar 

  • Desai N, Gaikwad DK, Chavan PD (2011) Physiological responses of two Morinda species under saline conditions. Am J Plant Physiol 6(3):157–166

    Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589

    Article  CAS  PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002

    Article  CAS  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 1:103–108

    Article  Google Scholar 

  • Egert M, Tevini M (2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ Exp Bot 48(1):43–49

    Article  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitriani HP, Haryanti (2016) Effect of the use of nanosilica fertilizer on the growth of tomato plant (Solanum lycopersicum). Bul Anat dan Fisiol 24(1):34–41

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  PubMed  Google Scholar 

  • Frewer LJ, Norde W, Fischer A, Kampers F (eds) (2011) Nanotechnology in the agri-food sector: implications for the future. Wiley, Weinheim

    Google Scholar 

  • Gangwar S, Singh VP (2011) Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (VI) phytotoxicity: implication of oxidative stress. Sci Hortic 129(2):321–328

    Article  CAS  Google Scholar 

  • Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J (2018) Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ 631:1100–1108

    Article  PubMed  CAS  Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agricultural, food, and water nanotechnologies for the poor. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Hayat Q, Ahmad A (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239(1–4):3–14

    Article  CAS  PubMed  Google Scholar 

  • Hichem H, Mounir D (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30(1):144–151

    Article  CAS  Google Scholar 

  • Huan C, Shu-Qing S (2014) Silicon nanoparticles: preparation, properties, and applications. Chin Phys B 23(8):088102

    Article  CAS  Google Scholar 

  • Hussain A, Rizwan M, Ali Q, Ali S (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26:1–10

    Article  Google Scholar 

  • Ivani R, Sanaei Nejad SH, Ghahraman B, Astaraei AR, Feizi H (2018) Role of bulk and Nanosized SiO2 to overcome salt stress during Fenugreek germination (Trigonella foenum-graceum L.). Plant Signal Behav 13(7):e1044190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Botanica Lithuanica 21(1):13–21

    Article  Google Scholar 

  • Judy JD, Bertsch PM (2014) Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. In: Advances in agronomy, vol 123. Academic, Cambridge, pp 1–64

    Google Scholar 

  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46(15):8467–8474

    Article  CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55

    Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63(1):119–123

    Article  CAS  Google Scholar 

  • Khalaki M, Ghorbani A, Moameri M (2016) Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J Rangeland Sci 6(3):221–231

    Google Scholar 

  • Kirschbaum MU (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kumar M (2013) Crop plants and abiotic stresses. J Biomol Res Ther 3:1

    Google Scholar 

  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M (2012) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxic Environ Health A 75(13–15):722–734

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem Int J 29(3):669–675

    Article  CAS  Google Scholar 

  • Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing For Univ (Natural Sciences Edition) 36(4):161–164

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    CAS  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Manivannan A, Ahn YK (2017) Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Front Plant Sci 8:1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Martı́nez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 161(1–3):247–256

    Article  Google Scholar 

  • McCutchan H, Shackel KA (1992) Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J Am Soc Hortic Sci 117(4):607–611

    Article  Google Scholar 

  • Merwad ARM, Desoky ESM, Rady MM (2018) Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic 228:132–144

    Article  CAS  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq A, Jamil N, Rizwan S, Mandokhel F, Riaz M, Hornyak GL, …, Shahwani MN (2018, September) Engineered silica nanoparticles and silica nanoparticles containing Controlled Release Fertilizer for drought and saline areas. In: IOP conference series: materials science and engineering, vol 414, no. 1, p 012029. IOP Publishing

    Google Scholar 

  • Nazaralian S, Majd A, Irian S, Najafi F, Ghahremaninejad F, Landberg T, Greger M (2017) Comparison of silicon nanoparticles and silicate treatments in fenugreek. Plant Physiol Biochem 115:25–33

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49(1):249–279

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell N, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomedicine 1(4):451

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66(3):487–492

    Article  CAS  Google Scholar 

  • Parveen N, Ashraf M (2010) Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak J Bot 42(3):1675–1684

    CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29(1):106–115

    Article  CAS  Google Scholar 

  • Pompelli MF, Martins SC, Antunes WC, Chaves AR, DaMatta FM (2010) Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. J Plant Physiol 167(13):1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Investigation on the effects of carbon nanotubes (CNTs) on seed germination and seedling growth of salvia (Salvia microsiphon), pepper (Capsicum annum) and tall fescue (Festuca arundinacea). J Seed Technol 33:155–160

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Putri FM, Suedy SWA, Darmanti S (2017) The effects of nano-silica fertilizer on the number of stomata, chlorophyll content and growth of black rice (Oryza sativa L. Cv. Japonica. Available online: http://www.ejournal.undip.ac.id/indek.php/baf/index

  • Rao GB, Susmitha P (2017) Silicon uptake, transportation and accumulation in Rice. J Pharmacogn Phytochem 6(6):290–293

    CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207

    Article  CAS  Google Scholar 

  • Rawson HM, Long MJ, Munns R (1988) Growth and development in NaCl-treated plants. I. Leaf Na+ and Clconcentrations do not determine gas exchange of leaf blades in barley. Funct Plant Biol 15(4):519–527

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Zia ur Rehman M, Rinklebe J, Tsang DC, Bashir A et al (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191

    Article  PubMed  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  PubMed  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2014) Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agric For Poljoprivreda i Sumarstvo 60(3):29–40

    Google Scholar 

  • Sgherri CLM, Maffei M, Navari-Izzo F (2000) Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol 157(3):273–279

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148

    Article  CAS  Google Scholar 

  • Sharifi RJ, Sharifirad M, Teixeira DSJ (2016) Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale FH Wigg) exposed to SiO2 nanoparticles. J Agric Sci Technol 18:1027–1040

    Google Scholar 

  • Shoeva OY, Khlestkina EK (2018) Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Res Commun 46(2):242–252

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018) 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. S Afr J Bot 118:120–128

    Article  CAS  Google Scholar 

  • Silva AJ, Nascimento CWA, Gouveia-Neto AS (2017) Assessment of cadmium phytotoxicity alleviation by silicon using chlorophyll a fluorescence. Photosynthetica 55(4):648–654

    Article  CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    CAS  PubMed  Google Scholar 

  • Sollins P, Robertson GP, Uehara G (1988) Nutrient mobility in variable-and permanent-charge soils. Biogeochemistry 6(3):181–199

    Article  Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18

    Article  CAS  PubMed  Google Scholar 

  • Suciaty T, Purnomo D, Sakya AT (2018) The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield. In: IOP conference series: earth and environmental science, vol 129, no. 1, p 012009. IOP Publishing

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14(12):1294

    Article  CAS  Google Scholar 

  • Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR (2015) Nano silicon application improves salinity tolerance of sweet pepper plants. Int J ChemTech Res 8(10):11–17

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front Environ Sci 4:46

    Article  Google Scholar 

  • Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Lcucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem Int J 27(9):1948–1957

    Article  Google Scholar 

  • Van Patten GF (2004) Hydroponic basics. Van Patten Publishing, Portland

    Google Scholar 

  • Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 7:5361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Naser N (1994) Improved performance of carbon paste amperometric biosensors through the incorporation of fumed silica. Electroanalysis 6(7):571–575

    Article  CAS  Google Scholar 

  • Xie Y, Li B, Tao G, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing For Univ (Natural Sciences Edition) 36(2):59–63

    CAS  Google Scholar 

  • Yassen A, Abdallah E, Gaballah M, Zaghloul S (2017) Role of Silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of Cucumber (Cucumis sativus L.). Int J Agric Res 22:130–135

    Google Scholar 

  • Yousaf B, Liu G, Wang R, Zia-ur-Rehman M, Rizwan MS, Imtiaz M et al (2016) Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of cd in the soil–plant system. Environ Earth Sci 75(5):374

    Article  CAS  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(3):180–190

    Article  CAS  Google Scholar 

  • Zarafshar M, Akbarinia M, Askari H, Hosseini SM, Rahaie M, Struve D, Striker GG (2014) Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear (Pyrus boisseriana). Université de Liège Gembloux Agro-Bio Tech; Biotechnologie, Agronomie, Société Et Environnement 18(3):353–366

    Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Zushi K, Matsuzoe N, Kitano M (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci Hortic 122(3):362–368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, H., Ahmed, K.B.M., Sami, F., Hayat, S. (2020). Silicon Nanoparticles and Plants: Current Knowledge and Future Perspectives. In: Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q. (eds) Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-33996-8_7

Download citation

Publish with us

Policies and ethics