Skip to main content

Immunotoxicity Testing – In Vitro Cell Culture Models

  • Chapter
  • First Online:
Interaction of Nanomaterials with the Immune System

Abstract

The understanding of how nanomaterials interact with cells, tissues, and organs is important to realize their potential for biomedical applications and for hazard assessment of occupational exposure. Depending on the nanomaterial characteristics, they can trigger various components of the immune system, that is, innate and adaptive immune systems, thereby either activating or suppressing immune system functions. In this chapter, we highlight the currently established immune cell models and readouts to address the possible effects of nanomaterials. In addition to the conventional 2D cultures, the design and use of more complex 3D models is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Lichtman A. Basic immunology – functions and disorders of the immune system. 3rd ed. Philadelphia: Saunders Elsevier; 2011.

    Google Scholar 

  • Alfaro-Moreno E, Nawrot TS, Vanaudenaerde BM, Hoylaerts MF, Vanoirbeek JA, Nemery B, et al. Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur Respir J. 2008;32:1184–94.

    Article  CAS  PubMed  Google Scholar 

  • Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88:20150207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baleeiro RB, Schweinlin M, Rietscher R, Diedrich A, Czaplewska JA, Metzger M, et al. Nanoparticle-based mucosal vaccines targeting tumor-associated antigens to human dendritic cells. J Biomed Nanotechnol. 2016;12:1527–43.

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  • Blank F, Rothen-Rutishauser B, Gehr P. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol Biol. 2007;36:669–77.

    Article  CAS  PubMed  Google Scholar 

  • Blank F, Gerber P, Rothen-Rutishauser B, Sakulkhu U, Salaklang J, De PK, et al. Biomedical nanoparticles modulate specific CD4(+) T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology. 2011a;5:606.

    Article  CAS  PubMed  Google Scholar 

  • Blank F, Gerber P, Rothen-Rutishauser B, Sakulkhu U, Salaklang J, de Peyer K, et al. Poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles modulate antigen-processing and CD4+ T cell stimulation by human dendritic cells. Nanotoxicology. 2011b;Early Online:1–16.

    Google Scholar 

  • Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125:S33–40.

    Article  PubMed  Google Scholar 

  • Boraschi D, Costantino L, Italiani P. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond). 2012;7:121–31.

    Article  CAS  Google Scholar 

  • Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater. 2018;30:e1704307.

    Article  CAS  PubMed  Google Scholar 

  • Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MV, Bellmann S, et al. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol. 2015;89:1469–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin DD. 1. Overview of the human immune response. J Allergy Clin Immunol. 2006;117:S430–5.

    Article  CAS  PubMed  Google Scholar 

  • Chiodo F, Marradi M, Park J, Ram AF, Penades S, van Die I, et al. Galactofuranose-coated gold nanoparticles elicit a pro-inflammatory response in human monocyte-derived dendritic cells and are recognized by DC-SIGN. ACS Chem Biol. 2014;9:383–9.

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Kim H, Choi J, Oh SM, Park J, Park K. Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model. Environ Health Toxicol. 2014;29:e2014004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clift MJ, Dechezelles JF, Rothen-Rutishauser B, Petri-Fink A. A biological perspective toward the interaction of theranostic nanoparticles with the bloodstream – what needs to be considered? Front Chem. 2015;3:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154:3–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.

    Article  CAS  PubMed  Google Scholar 

  • Delcassian D, Sattler S, Dunlop IE. T cell immunoengineering with advanced biomaterials. Integr Biol (Camb). 2017;9:211–22.

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–78.

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 2009;4:411–4.

    Article  CAS  PubMed  Google Scholar 

  • Dostert C, Petrilli V, Van BR, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science (New York, NY). 2008;320:674–7.

    Article  CAS  Google Scholar 

  • Drasler B, Sayre P, Steinhauser KG, Petri-Fink A, Rothen-Rutishauser B. In vitro approaches to assess the hazard of nanomaterials. NanoImpact. 2017a;8:99–116.

    Article  Google Scholar 

  • Drasler B, Sayre P, Steinhäuser KG, Petri-Fink A, Rothen-Rutishauser B. In vitro approaches to assess the hazard of nanomaterials. NanoImpact. 2017b;8:99–116.

    Article  Google Scholar 

  • Dusinska M, Tulinska J, El YN, Kuricova M, Liskova A, Rollerova E, et al. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: new strategies for toxicity testing? Food Chem Toxicol. 2017;109:797–811.

    Article  CAS  PubMed  Google Scholar 

  • Elsabahy M, Wooley KL. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev. 2013;42:5552–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farcal L, Torres AF, Di CL, Rotoli BM, Bussolati O, Bergamaschi E, et al. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One. 2015;10:e0127174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrera C, Fadeel B. It takes two to tango: understanding the interactions between engineered nanomaterials and the immune system. Eur J Pharm Biopharm. 2015;95:3–12.

    Article  CAS  PubMed  Google Scholar 

  • Frohlich E. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo. Int J Nanomedicine. 2015;10:3761–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich E. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1091–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohlich E, Salar-Behzadi S. Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 2014;15:4795–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fytianos K, Rodriguez-Lorenzo L, Clift MJ, Blank F, Vanhecke D, von GC, et al. Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine. 2015;11:633–44.

    Article  CAS  PubMed  Google Scholar 

  • Fytianos K, Drasler B, Blank F, Garnier CV, Seydoux E, Rodriguez-Lorenzo L, et al. Current in vitro approaches to assess nanoparticle interactions with lung cells. Nanomedicine (Lond). 2016;11:2457.

    Article  CAS  Google Scholar 

  • Fytianos K, Chortarea S, Rodriguez-Lorenzo L, Blank F, von GC, Petri-Fink A, et al. Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano. 2017;11:375–83.

    Article  CAS  PubMed  Google Scholar 

  • Gao LG. Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact. 2018;9:14–30.

    Article  CAS  Google Scholar 

  • Giannakou C, Park MV, De Jong WH, van LH, Vandebriel RJ, Geertsma RE. A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements. Int J Nanomedicine. 2016;11:2935–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gstraunthaler G, Hartung T. Good cell culture practice: good laboratory practice in the cell culture laboratory for the standardization and quality assurance of in vitro studies. In: Lehr C-M, editor. Cell culture models of biological barriers. In-vitro test systems for drug absorption and delivery. London, New York: Taylor and Francis; 2002. p. 112–20.

    Chapter  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–67.

    Article  CAS  PubMed  Google Scholar 

  • Hartung T. Toxicology for the twenty-first century. Nature. 2009;460:208–12.

    Article  CAS  PubMed  Google Scholar 

  • Heine G, Sims GP, Worm M, Lipsky PE, Radbruch A. Isolation of human B cell populations. Curr Protoc Immunol. 2011;Chapter 7:Unit7.

    PubMed  Google Scholar 

  • Hubbell JA, Swartz MA. Materials engineering for immunomodulation. Nature. 2009;462:449–60.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Vanoirbeek JA, Hoet PH. Interactions of nanomaterials with the immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:169–83.

    Article  CAS  PubMed  Google Scholar 

  • Ilinskaya AN, Dobrovolskaia MA. Understanding the immunogenicity and antigenicity of nanomaterials: past, present and future. Toxicol Appl Pharmacol. 2016;299:70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci U S A. 2015;112:14467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kermanizadeh A, Balharry D, Wallin H, Loft S, Moller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol. 2015;45:837–72.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto TK, Maldonado RA. Nanoparticles for the induction of antigen-specific immunological tolerance. Front Immunol. 2018;9:230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein SG, Serchi T, Hoffmann L, Blomeke B, Gutleb AC. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol. 2013;10:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiveland CR. Peripheral blood mononuclear. Cell. 2015a:161–7.

    Google Scholar 

  • Kleiveland CR: Co-cultivation of Caco-2 and HT-29MTX. 2015b:135–140.

    Google Scholar 

  • Kleiveland CR. Co-culture Caco-2/Immune. Cell. 2015c:197–205.

    Google Scholar 

  • Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC III, Boekelheide K, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev. 2010;13:51–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220:141–8.

    Article  CAS  PubMed  Google Scholar 

  • Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol. 2011;253:81–93.

    Article  CAS  PubMed  Google Scholar 

  • Lameijer MA, Tang J, Nahrendorf M, Beelen RH, Mulder WJ. Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev Mol Diagn. 2013;13:567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther. 2013;15 Suppl 1:S3.

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Syu SH, Chen YS, Hussain SM, Aleksandrovich OA, Chen WL, et al. Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells. Nanotechnology. 2014;25:125103.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A, Brandenberger C, Blank F, Gehr P, Rothen-Rutishauser B. A 3D model of the human epithelial airway barrier. In: Maguire T, Novik E, editors. Methods in bioengineering. Alternative technologies to animal testing. Boston, London: Artech House; 2010a. p. 239–60.

    Google Scholar 

  • Lehmann AD, Daum N, Lehr CM, Bur M, Parak W, Gehr P, et al. An in vitro triple cell co-culture model of the human alveolar epithelial barrier including primary cells. Submitted to J R Soc Interface. 2010b.

    Google Scholar 

  • Lehmann AD, Daum N, Lehr CM, Bur M, Parak W, Gehr P, et al., An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(3):398–406.

    Google Scholar 

  • Lehner M, Morhart P, Stilper A, Holter W. Functional characterization of monocyte-derived dendritic cells generated under serum free culture conditions. Immunol Lett. 2005;99:209–16.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond). 2016;11:269–87.

    Article  CAS  Google Scholar 

  • Li Y, Italiani P, Casals E, Tran N, Puntes VF, Boraschi D. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology. 2015;9:462–73.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fujita M, Boraschi D. Endotoxin contamination in nanomaterials leads to the misinterpretation of immunosafety results. Front Immunol. 2017;8:472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorthois I, Asselineau D, Seyler N, Pouliot R. Contribution of in vivo and organotypic 3D models to understanding the role of macrophages and neutrophils in the pathogenesis of psoriasis. Mediat Inflamm. 2017;2017:7215072.

    Article  CAS  Google Scholar 

  • Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. 1998;395:82–6.

    Article  CAS  PubMed  Google Scholar 

  • Nicod LP. Function of human lung dendritic cells. In: Lung macrophages and dendritic cells in health and disease. New York: Marcel Dekker, Inc.; 1997. p. 311–34.

    Google Scholar 

  • Oberdorster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 2007;1:2–25.

    Article  CAS  Google Scholar 

  • OECD. OECD guidelines for the testing of chemicals; 2013.

    Google Scholar 

  • OECD. Test No. 439. In: Vitro skin irritation: reconstructed human epidermis test method. Paris: OECD Publishing; 2015.

    Chapter  Google Scholar 

  • Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 2009;259:113–21.

    Article  CAS  PubMed  Google Scholar 

  • Paur HR, Cassee FR, Teeguarden JG, Fissan H, Diabate S, Aufderheide M, et al. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—a dialog between aerosol science and biology. J Aerosol Sci. 2011;42:668–92.

    Article  CAS  Google Scholar 

  • Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Health. 2016;2016:170–6.

    PubMed  PubMed Central  Google Scholar 

  • Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, et al. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy. 2015;13:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res. 2012;14:1–11.

    Article  Google Scholar 

  • Rabolli V, Lison D, Huaux F. The complex cascade of cellular events governing inflammasome activation and IL-1beta processing in response to inhaled particles. Part Fibre Toxicol. 2016;13:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roggen EL, Soni NK, Verheyen GR. Respiratory immunotoxicity: an in vitro assessment. Toxicol In Vitro. 2006;20:1249–64.

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 2005;32:281–9.

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser B, Clift MJD, Jud C, Fink A, Wick P. Human epithelial cells in vitro – are they an advantageous tool to help understand the nanomaterial-biological barrier interaction? ENTL. 2012;1:1–20.

    Google Scholar 

  • Salazar F, Ghaemmaghami AM. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol. 2013;4:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for DC differentiation and clinical DC vaccination studies. J Leukoc Biol. 2008;84:1364–73.

    Article  CAS  PubMed  Google Scholar 

  • Sauer UG, Vogel S, Aumann A, Hess A, Kolle SN, Ma-Hock L, et al. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation. Toxicol Appl Pharmacol. 2014;276:1–20.

    Article  CAS  PubMed  Google Scholar 

  • Schleh C, Rothen-Rutishauser BM, Blank F, Lauenstein HD, Nassimi M, Krug N, et al. Surfactant Protein D modulates allergen particle uptake and inflammatory response in a human epithelial airway model. Respir Res. 2012;13:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8:1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seydoux E, Rothen-Rutishauser B, Nita IM, Balog S, Gazdhar A, Stumbles PA, et al. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. Int J Nanomedicine. 2014;9:3885–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seydoux E, Rodriguez-Lorenzo L, Blom RA, Stumbles PA, Petri-Fink A, Rothen-Rutishauser BM, et al. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4(+) T Cell Proliferation. Nanomedicine. 2016;12:1815–26.

    Article  CAS  PubMed  Google Scholar 

  • Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13:592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MJ, Brown JM, Zamboni WC, Walker NJ. From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol Sci. 2014;138:249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner S, Czerwinski J, Comte P, Popovicheva O, Kireeva E, Mueller L, et al. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro. Atmos Environ. 2013;81:380–8.

    Article  CAS  Google Scholar 

  • Sun B, Wang X, Ji Z, Li R, Xia T. NLRP3 inflammasome activation induced by engineered nanomaterials. Small. 2013;9:1595–607.

    Article  CAS  PubMed  Google Scholar 

  • Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976;17:565–77.

    Article  CAS  PubMed  Google Scholar 

  • Susewind J, de SC-W RU, Collnot EM, Schneider-Daum N, Griffiths GW, et al. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology. 2016;10:53–62.

    CAS  PubMed  Google Scholar 

  • Swartz MA, Hubbell JA. Engineering eapproaches to immunotherapy. Sci Transl Med. 2012;4:148rv9.

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Reese TA. Making mouse models that reflect human immune responses. Trends Immunol. 2017;38:181–93.

    Article  CAS  PubMed  Google Scholar 

  • Temchura VV, Kozlova D, Sokolova V, Uberla K, Epple M. Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen. Biomaterials. 2014;35:6098–105.

    Article  CAS  PubMed  Google Scholar 

  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release. 2001;76:59–71.

    Article  CAS  PubMed  Google Scholar 

  • Tornqvist E, Annas A, Granath B, Jalkesten E, Cotgreave I, Oberg M. Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One. 2014;9:e101638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125:S24–32.

    Article  PubMed  Google Scholar 

  • van den Bogaard EH, Tjabringa GS, Joosten I, Vonk-Bergers M, van RE, Tijssen HJ, et al. Crosstalk between keratinocytes and T cells in a 3D microenvironment: a model to study inflammatory skin diseases. J Invest Dermatol. 2014;134:719–27.

    Article  CAS  PubMed  Google Scholar 

  • Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev. 2013;65:80–8.

    Article  CAS  PubMed  Google Scholar 

  • Vogt A, Rancan F, Ahlberg S, Nazemi B, Choe CS, Darvin ME, et al. Interaction of dermatologically relevant nanoparticles with skin cells and skin. Beilstein J Nanotechnol. 2014;5:2363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • vonGarnier C, Nicod LP. Immunology taught by lung dendritic cells. Swiss Med Wkly. 2009;139:186–92.

    CAS  Google Scholar 

  • Walczak AP, Kramer E, Hendriksen PJ, Helsdingen R, van der Zande M, Rietjens IM, et al. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology. 2015;9:886–94.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Matsukura S, Watanabe S, Adachi M, Suzaki H. Involvement of Toll-like receptors in the immune response of nasal polyp epithelial cells. Clin Immunol. 2007;124:345–52.

    Article  CAS  PubMed  Google Scholar 

  • Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnol. 2016;14:16.

    Article  CAS  Google Scholar 

  • Wills JW, Hondow N, Thomas AD, Chapman KE, Fish D, Maffeis TG, et al. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm). Part Fibre Toxicol. 2016;13:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A. 2010;107:19449–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zupke O, Distler E, Jurchott A, Paiphansiri U, Dass M, Thomas S, et al. Nanoparticles and antigen-specific T-cell therapeutics: a comprehensive study on uptake and release. Nanomedicine (Lond). 2015;10:1063–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Adolphe Merkle Foundation. BRR acknowledges the Swiss National Science Foundation (310030_159847/1), and BD acknowledges the Peter and Traudl Engelhorn Foundation.

Financial Disclosure

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Rothen-Rutishauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rothen-Rutishauser, B., Drasler, B., Petri-Fink, A. (2020). Immunotoxicity Testing – In Vitro Cell Culture Models. In: Bonner, J., Brown, J. (eds) Interaction of Nanomaterials with the Immune System. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-33962-3_11

Download citation

Publish with us

Policies and ethics