Skip to main content

Applications of Cutting-Edge Immunoproteomics Technology in Human Immunotherapy

  • Chapter
  • First Online:
Advanced Concepts in Human Immunology: Prospects for Disease Control
  • 477 Accesses

Abstract

Harnessing the ability of the immune system to mount robust and effective responses in the face of pathogenic challenge or cancer development is rapidly developing into frontline treatment for these diseases. This field, called immunotherapy, relies on the activation of antibody mediated B cell and/or cellular mediated T cell responses that directly target diseased cells and tissues. One of the most challenging aspects of developing effective immunotherapeutics, however, is first identifying the target antigens that the immune system should recognize and ‘attack’. Among the many methods available today immunoproteomics is ideally suited to identify relevant target antigens. Immunoproteomics combines cutting edge proteomic methodologies to identify physiologically relevant target antigens expressed and/or produced by the diseased cells with standard immunological techniques to validate these targets. In this topic, we explore how immunoproteomics can shape the development of effective immunotherapeutics. We focus primarily on immunotherapies harnessing the cell mediated arm of the adaptive immune system and review promising clinical data on T cell-based immunotherapies in cancer, infectious diseases, and autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shastri N, Schwab S, Serwold T. Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol. 2002;20:463–93.

    Article  CAS  PubMed  Google Scholar 

  2. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (New York). 1991;254(5038):1643–7.

    Article  Google Scholar 

  3. Brichard V, Van Pel A, Wolfel T, Wolfel C, De Plaen E, Lethe B, et al. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1993;178(2):489–95.

    Article  CAS  PubMed  Google Scholar 

  4. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994;180(1):347–52.

    Article  CAS  PubMed  Google Scholar 

  5. Skipper JC, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y, et al. An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med. 1996;183(2):527–34.

    Article  CAS  PubMed  Google Scholar 

  6. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science (New York). 2005;307(5715):1630–4.

    Article  CAS  Google Scholar 

  7. Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC, et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 2006;126(1):205–18.

    Article  CAS  PubMed  Google Scholar 

  8. Sospedra M, Pinilla C, Martin R. Use of combinatorial peptide libraries for T-cell epitope mapping. Mapping. 2003;29(3):236–47.

    CAS  Google Scholar 

  9. Anthony DD, Lehmann PV. T-cell epitope mapping using the ELISPOT approach. Mapping. 2003;29(3):260–9.

    CAS  Google Scholar 

  10. Precopio ML, Butterfield TR, Casazza JP, Little SJ, Richman DD, Koup RA, et al. Optimizing peptide matrices for identifying T cell antigens. Cytometry A. 2008;73(11):1071–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roederer M, Koup RA. Optimized determination of T cell epitope responses. J Immunol Methods. 2003;274(1–2):221–8.

    Article  CAS  PubMed  Google Scholar 

  12. Erup Larsen M, Kloverpris H, Stryhn A, Koofhethile CK, Sims S, Ndung’u T, et al. HLArestrictor†a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics. 2011;63(1):43–55.

    Article  PubMed  CAS  Google Scholar 

  13. De Groot AS, Berzofsky JA. From genome to vaccine—new immunoinformatics tools for vaccine design. Bioinformatics Vaccin Des. 2004;34(4):425–8.

    Google Scholar 

  14. Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics. 1999;50(3-4):201–12.

    Article  CAS  PubMed  Google Scholar 

  15. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999;50(Journal Article):213–9.

    Article  CAS  PubMed  Google Scholar 

  16. Reche PA, Glutting J-P, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol. 2002;63(9):701–9.

    Article  CAS  PubMed  Google Scholar 

  17. Reche PA, Glutting J-P, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6):405–19.

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Luo C, Mamitsuka H, Zhu S. MetaMHCpan, a meta approach for pan-specific MHC peptide binding prediction. In: Thomas S, editor. Vaccine design: methods and protocols, Volume 2: vaccines for veterinary diseases. New York: Springer; 2016. p. 753–60.

    Chapter  Google Scholar 

  19. Shetty V, Nickens Z, Testa J, Hafner J, Sinnathamby G, Philip R. Quantitative immunoproteomics analysis reveals novel MHC class I presented peptides in cisplatin-resistant ovarian cancer cells. J Proteomics. 2012;75(11):3270–90.

    Article  CAS  PubMed  Google Scholar 

  20. Testa JS, Shetty V, Hafner J, Nickens Z, Kamal S, Sinnathamby G, et al. MHC class I-presented T cell epitopes identified by immunoproteomics analysis are targets for a cross reactive influenza-specific T cell response. PloS one. 2012;7(11):e48484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Testa JS, Shetty V, Sinnathamby G, Nickens Z, Hafner J, Kamal S, et al. Conserved MHC class I–presented dengue virus epitopes identified by immunoproteomics analysis are targets for cross-serotype reactive T-cell response. J Infect Dis. 2012;205(4):647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piazza P, Campbell D, Marques E, Hildebrand WH, Buchli R, Mailliard R, et al. Dengue virus-infected human dendritic cells reveal hierarchies of naturally expressed novel NS3 CD8 T cell epitopes. Clin Exp Immunol. 2014;177(3):696–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Comber JD, Karabudak A, Huang X, Piazza PA, Marques ET, Philip R. Dengue virus specific dual HLA binding T cell eptiopes induce CD8+ T cell responses in seropositive individuals. Hum Vaccin Immunother. 2014;10(12):3531.

    Article  PubMed  Google Scholar 

  24. Zhong W, Reche PA, Lai C-C, Reinhold B, Reinherz EL. Genome-wide characterization of a viral cytotoxic T lymphocyte epitope repertoire. J Biol Chem. 2003;278(46):45135–44.

    Article  CAS  PubMed  Google Scholar 

  25. Rotzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature. 1990;348(6298):252–4.

    Article  CAS  PubMed  Google Scholar 

  26. Falk K, Rotzschke O, Stevanovie S, Jung G, Rammensee H-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351(6324):290–6.

    Article  CAS  PubMed  Google Scholar 

  27. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science (New York). 1992;255(5049):1261–3.

    Article  CAS  Google Scholar 

  28. van Els CA, Herberts CA, van der Heeft E, Poelen MC. van Gaans-van den Brink JA, van der Kooi A, et al. A single naturally processed measles virus peptide fully dominates the HLA-A∗0201-associated peptide display and is mutated at its anchor position in persistent viral strains. Eur J Immunol. 2000;30(4):1172–81.

    Article  PubMed  Google Scholar 

  29. Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  30. Comber JD, Karabudak A, Shetty V, Testa JS, Huang X, Philip RMHC, Class I, Presented T. Cell epitopes as potential antigens fro therapeutic vaccine against HBV chronic infection. Hepatitis Res Treat. 2014:860562.. (Journal Article)

    Google Scholar 

  31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  32. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S. [et al]. Immune system: a double-edged sword in cancer. Inflamma Res. 2013;62(9):823-834.

    Article  CAS  Google Scholar 

  33. Liu Y, Zeng G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J Immunother. 2012;35(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hwu P. Treating cancer by targeting the immune system. N Engl J Med. 2010;363(8):779–81.

    Article  CAS  PubMed  Google Scholar 

  35. Hamai A, Benlalam H, Meslin F, Hasmim M, Carre T, Akalay I, et al. Immune surveillance of human cancer: if the cytotoxic T-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens. 2010;75(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  36. Frey AB, Monu N. Effector-phase tolerance: another mechanism of how cancer escapes antitumor immune response. J Leukoc Biol. 2006;79(4):652–62.

    Article  CAS  PubMed  Google Scholar 

  37. Feyler S, Selby PJ, Cook G. Regulating the regulators in cancer-immunosuppression in multiple myeloma (MM). Blood Rev. 2013;27(3):155–64.

    Article  CAS  PubMed  Google Scholar 

  38. Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 2011;71(16):5393–9.

    Article  CAS  PubMed  Google Scholar 

  39. Fefer A. Immunotherapy and chemotherapy of Moloney sarcoma virus-induced tumors in mice. Cancer Res. 1969;29(12):2177–83.

    CAS  PubMed  Google Scholar 

  40. Rosenberg SA, Terry WD. Passive immunotherapy of cancer in animals and man. Adv Cancer Res. 1977;25:323–88.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Huang Q, Zhong Y, Wang A, Sun J, Zhou J. Prospects in adoptive cell transfer therapy for Cancer. J Immunol Clin Res. 2013;1:1008.

    Google Scholar 

  42. Rayner AA, Grimm EA, Lotze MT, Wilson DJ, Rosenberg SA. Lymphokine-activated killer (LAK) cell phenomenon. IV. Lysis by LAK cell clones of fresh human tumor cells from autologous and multiple allogeneic tumors. J Natl Cancer Inst. 1985;75(1):67–75.

    CAS  PubMed  Google Scholar 

  43. Khayat D, Weil M, Soubrane C, Jacquillat C. LAK cells and immunotherapy of cancer. Bull Cancer. 1988;75(1):3–7.

    CAS  PubMed  Google Scholar 

  44. Shi SB, Ma TH, Li CH, Tang XY. Effect of maintenance therapy with dendritic cells: cytokine-induced killer cells in patients with advanced non-small cell lung cancer. Tumori. 2012;98(3):314–9.

    Article  CAS  PubMed  Google Scholar 

  45. Yuanying Y, Lizhi N, Feng M, Xiaohua W, Jianying Z, Fei Y, et al. Therapeutic outcomes of combining cryotherapy, chemotherapy and DC-CIK immunotherapy in the treatment of metastatic non-small cell lung cancer. Cryobiology. 2013;67(2):235–40.

    Article  PubMed  CAS  Google Scholar 

  46. Ren J, Di L, Song G, Yu J, Jia J, Zhu Y, et al. Selections of appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast cancer: reargument of such contentious therapeutic preferences. Clin Transl Oncol. 2013;15(10):780–8.

    Article  CAS  PubMed  Google Scholar 

  47. Liao Y, Ou J, Deng J, Geng P, Zeng R, Tian Y, et al. Clinical implications of the tumor-infiltrating lymphocyte subsets in colorectal cancer. Med Oncol. 2013;30(4):727.

    Article  PubMed  CAS  Google Scholar 

  48. Igarashi T, Takahashi H, Tobe T, Suzuki H, Mizoguchi K, Nakatsu HO, et al. Effect of tumor-infiltrating lymphocyte subsets on prognosis and susceptibility to interferon therapy in patients with renal cell carcinoma. Urol Int. 2002;69(1):51–6.

    Article  PubMed  Google Scholar 

  49. Freedman RS, Tomasovic B, Templin S, Atkinson EN, Kudelka A, Edwards CL, et al. Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J Immunol Methods. 1994;167(1-2):145–60.

    Article  CAS  PubMed  Google Scholar 

  50. Morgan RA, Dudley ME, Yu YY, Zheng Z, Robbins PF, Theoret MR, et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol. 2003;171(6):3287–95.

    Article  CAS  PubMed  Google Scholar 

  51. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koehler P, Schmidt P, Hombach AA, Hallek M, Abken H. Engineered T cells for the adoptive therapy of B-cell chronic lymphocytic leukaemia. Adv Hematol. 2012;2012:595060.

    Article  PubMed  CAS  Google Scholar 

  54. Gill S, Porter DL. CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert Opin Biol Ther. 2014;14(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  55. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  56. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, et al. The MHC class I peptide repertoire is molded by the transcriptome. J Exp Med. 2008;205(3):595–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Admon A, Barnea E, Ziv T. Tumor antigens and proteomics from the point of view of the major histocompatibility complex peptides. Mol Cell Proteomics. 2003;2(6):388–98.

    Article  CAS  PubMed  Google Scholar 

  59. Hanada K, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature. 2004;427(6971):252–6.

    Article  CAS  PubMed  Google Scholar 

  60. Marincola FM, Rivoltini L, Salgaller ML, Player M, Rosenberg SA. Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence of in vivo priming by tumor cells. J Immunother Emphasis Tumor Immunol. 1996;19(4):266–77.

    Article  CAS  PubMed  Google Scholar 

  61. Nagorsen D, Keilholz U, Rivoltini L, Schmittel A, Letsch A, Asemissen AM, et al. Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcinoembryonic antigen in patients with colorectal cancer. Cancer Res. 2000;60(17):4850–4.

    CAS  PubMed  Google Scholar 

  62. Traversari C, van der Bruggen P, Luescher IF, Lurquin C, Chomez P, Van Pel A, et al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J Exp Med. 1992;176(5):1453–7.

    Article  CAS  PubMed  Google Scholar 

  63. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.

    Article  CAS  PubMed  Google Scholar 

  64. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61(12):4766–72.

    CAS  PubMed  Google Scholar 

  65. Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33(7):364–72.

    Article  CAS  PubMed  Google Scholar 

  66. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9.

    Article  CAS  PubMed  Google Scholar 

  67. Parmiani G, Sensi M, Castelli C, Rivoltini L. Anichini A. T-cell response to unique and shared antigens and vaccination of cancer patients. Cancer Immun. 2002;2:6.

    PubMed  Google Scholar 

  68. Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science (New York). 2013;341(6151):1192–8.

    Article  CAS  Google Scholar 

  69. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18(8):1254–61.

    Article  CAS  PubMed  Google Scholar 

  70. Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6.

    Article  PubMed  Google Scholar 

  71. Hu X, Chakraborty NG, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B. Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with the MAGE-1 peptide loaded antigen presenting cell-based vaccine. Cancer Res. 1996;56(11):2479–83.

    CAS  PubMed  Google Scholar 

  72. Slingluff CL Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J (Sudbury, Mass). 2011;17(5):343–50.

    Article  CAS  Google Scholar 

  73. Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res. 2007;13(21):6386–95.

    Article  CAS  PubMed  Google Scholar 

  74. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: eastern cooperative oncology group phase II trial E1696. Clin Cancer Res. 2009;15(4):1443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res. 2009;15(22):7036–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Block MS, Suman VJ, Nevala WK, Kottschade LA, Creagan ET, Kaur JS, et al. Pilot study of granulocyte-macrophage colony-stimulating factor and interleukin-2 as immune adjuvants for a melanoma peptide vaccine. Melanoma Res. 2011;21(5):438–45.

    Article  CAS  PubMed  Google Scholar 

  77. Lesterhuis WJ, Schreibelt G, Scharenborg NM, Brouwer HM, Gerritsen MJ, Croockewit S, et al. Wild-type and modified gp100 peptide-pulsed dendritic cell vaccination of advanced melanoma patients can lead to long-term clinical responses independent of the peptide used. Cancer Immunol Immunother. 2011;60(2):249–60.

    Article  CAS  PubMed  Google Scholar 

  78. Oshita C, Takikawa M, Kume A, Miyata H, Ashizawa T, Iizuka A, et al. Dendritic cell-based vaccination in metastatic melanoma patients: phase II clinical trial. Oncol Rep. 2012;28(4):1131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsuruma T, Hata F, Torigoe T, Furuhata T, Idenoue S, Kurotaki T, et al. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J Transl Med. 2004;2(1):19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kameshima H, Tsuruma T, Torigoe T, Takahashi A, Hirohashi Y, Tamura Y, et al. Immunogenic enhancement and clinical effect by type-I interferon of anti-apoptotic protein, survivin-derived peptide vaccine, in advanced colorectal cancer patients. Cancer Sci. 2011;102(6):1181–7.

    Article  CAS  PubMed  Google Scholar 

  81. Speetjens FM, Kuppen PJ, Welters MJ, Essahsah F, Voet van den Brink AM, Lantrua MG, et al. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res. 2009;15(3):1086–95.

    Article  CAS  PubMed  Google Scholar 

  82. Zeestraten EC, Speetjens FM, Welters MJ, Saadatmand S, Stynenbosch LF, Jongen R, et al. Addition of interferon-alpha to the p53-SLP(R) vaccine results in increased production of interferon-gamma in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer. 2013;132(7):1581–91.

    Article  CAS  PubMed  Google Scholar 

  83. Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, et al. Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother (Hagerstown, Md: 1997). 2007;30(7):762-772.

    Google Scholar 

  84. Lesterhuis WJ, De Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH, De Boer A, et al. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 2010;30(12):5091–7.

    PubMed  Google Scholar 

  85. Grenader T, Nash S, Adams R, Kaplan R, Fisher D, Maughan T, et al. Derived neutrophil lymphocyte ratio is predictive of survival from intermittent therapy in advanced colorectal cancer: a post hoc analysis of the MRC COIN study. Br J Cancer. 2016;114(6):612–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377(9783):2103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tsuruma T, Iwayama Y, Ohmura T, Katsuramaki T, Hata F, Furuhata T, et al. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer. J Transl Med. 2008;6:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Carmichael MG, Benavides LC, Holmes JP, Gates JD, Mittendorf EA, Ponniah S, et al. Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States military cancer institute clinical trials group study I-04. Cancer. 2010;116(2):292–301.

    Article  CAS  PubMed  Google Scholar 

  89. Mittendorf EA, Clifton GT, Holmes JP, Clive KS, Patil R, Benavides LC, et al. Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US military cancer institute clinical trials group study I-01 and I-02. Cancer. 2012;118(10):2594–602.

    Article  CAS  PubMed  Google Scholar 

  90. Morse MA, Secord AA, Blackwell K, Hobeika AC, Sinnathamby G, Osada T, et al. MHC class I-presented tumor antigens identified in ovarian cancer by immunoproteomic analysis are targets for T-cell responses against breast and ovarian cancer. Clin Cancer Res. 2011;17(10):3408–19.

    Article  CAS  PubMed  Google Scholar 

  91. Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118(17):4354–62.

    Article  CAS  PubMed  Google Scholar 

  92. Koski GK, Koldovsky U, Xu S, Mick R, Sharma A, Fitzpatrick E, et al. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J Immunother (Hagerstown, Md: 1997). 2012;35(1):54-65.

    Google Scholar 

  93. Schrader AJ, Varga Z, Hegele A, Pfoertner S, Olbert P, Hofmann R. Second-line strategies for metastatic renal cell carcinoma: classics and novel approaches. J Cancer Res Clin Oncol. 2006;132(3):137–49.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshimura K, Minami T, Nozawa M, Uemura H. Phase I clinical trial of human vascular endothelial growth factor receptor 1 peptide vaccines for patients with metastatic renal cell carcinoma. Br J Cancer. 2013;108(6):1260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berntsen A, Brimnes MK, thor Straten P, Svane IM. Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2. J Immunother (Hagerstown, Md: 1997). 2010;33(4):425-434.

    Google Scholar 

  96. Lemoine FM, Cherai M, Giverne C, Dimitri D, Rosenzwajg M, Trebeden-Negre H, et al. Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Intl J Oncol. 2009;35(3):569–81.

    CAS  Google Scholar 

  97. Zeeberg Iversen T, Engell-Noerregaard L, Ellebaek E, Andersen R, Kiaer Larsen S, Bjoern J, et al. Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res. 2013;

    Google Scholar 

  98. Sawada Y, Yoshikawa T, Nobuoka D, Shirakawa H, Kuronuma T, Motomura Y, et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18(13):3686–96.

    Article  CAS  PubMed  Google Scholar 

  99. Berinstein NL, Karkada M, Morse MA, Nemunaitis JJ, Chatta G, Kaufman H, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 2012;10:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, et al. Long-term vaccination with multiple peptides derived from cancer-testis antigens can maintain a specific T-cell response and achieve disease stability in advanced biliary tract cancer. Clin Cancer Res. 2013;19(8):2224–31.

    Article  CAS  PubMed  Google Scholar 

  101. Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010;102(7):493–501.

    Article  CAS  PubMed  Google Scholar 

  102. Minutilli E, Feliciani C. Adjuvant therapy for resected stage III melanoma patients: high-dose interferon-alpha versus ipilimumab combined with kinases inhibitors. Tumori. 2012;98(2):185–90.

    Article  CAS  PubMed  Google Scholar 

  103. Liu P, Zhang C, Chen J, Zhang R, Ren J, Huang Y, et al. Combinational therapy of interferon-alpha and chemotherapy normalizes tumor vasculature by regulating pericytes including the novel marker RGS5 in melanoma. J Immunother. 2011;34(3):320–6.

    Article  CAS  PubMed  Google Scholar 

  104. Royal RE, Steinberg SM, Krouse RS, Heywood G, White DE, Hwu P, et al. Correlates of response to IL-2 therapy in patients treated for metastatic renal cancer and melanoma. Cancer J Sci Am. 1996;2(2):91–8.

    CAS  PubMed  Google Scholar 

  105. Elias EG, Zapas JL, Beam SL, Brown SD. GM-CSF and IL-2 combination as adjuvant therapy in cutaneous melanoma: early results of a phase II clinical trial. Oncology (Williston Park). 2005;19(4 Suppl 2):15–8.

    Google Scholar 

  106. Fateh S, Schell TD, Gingrich R, Neves RI, Drabick JJ. Unsuccessful high dose IL-2 therapy followed immediately by near continuous low dose temozolomide can result in rapid durable complete and near-complete remissions in metastatic melanoma. Cancer Biol Ther. 2010;10(11):1091–7.

    Article  CAS  PubMed  Google Scholar 

  107. Haranaka K. Tumor necrosis factor: how to improve the antitumor activity and decrease accompanying side effects for therapeutic application. J Biol Response Mod. 1988;7(6):525–34.

    CAS  PubMed  Google Scholar 

  108. Sidhu RS, Bollon AP. Tumor necrosis factor activities and cancer therapy—a perspective. Pharmacol Ther. 1993;57(1):79–128.

    Article  CAS  PubMed  Google Scholar 

  109. Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005;16(1):35–53.

    Article  CAS  PubMed  Google Scholar 

  110. Kouklakis G, Efremidou EI, Pitiakoudis M, Liratzopoulos N, Polychronidis A. Development of primary malignant melanoma during treatment with a TNF-alpha antagonist for severe Crohn’s disease: a case report and review of the hypothetical association between TNF-alpha blockers and cancer. Drug Desi Devel Ther. 2013;7:195–9.

    CAS  Google Scholar 

  111. Sorkin P, Abu-Abid S, Lev D, Gutman M, Aderka D, Halpern P, et al. Systemic leakage and side effects of tumor necrosis factor alpha administered via isolated limb perfusion can be manipulated by flow rate adjustment. Arch Surg. 1995;130(10):1079–84.

    Article  CAS  PubMed  Google Scholar 

  112. Cai W, Kerner ZJ, Hong H, Sun J. Targeted cancer therapy with tumor necrosis factor-alpha. Biochem Insights. 2008;2008:15–21.

    PubMed  Google Scholar 

  113. Borrello IM, Levitsky HI, Stock W, Sher D, Qin L, DeAngelo DJ, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood. 2009;114(9):1736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Elias EG, Zapas JL, McCarron EC, Beam SL, Hasskamp JH, Culpepper WJ. Sequential administration of GM-CSF (Sargramostim) and IL-2 +/- autologous vaccine as adjuvant therapy in cutaneous melanoma: an interim report of a phase II clinical trial. Cancer Biother Radiopharm. 2008;23(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  115. von Wussow P, Block B, Hartmann F, Deicher H. Intralesional interferon-alpha therapy in advanced malignant melanoma. Cancer. 1988;61(6):1071–4.

    Article  Google Scholar 

  116. Kim H, Gao W, Ho M. Novel immunocytokine IL12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice. PloS one. 2013;8(11):e81919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hemmerle T, Neri D. The antibody-based targeted delivery of interleukin-4 and 12 to the tumor neovasculature eradicates tumors in three mouse models of cancer. Int J Cancer. 2014;134(2):467–77.

    Article  PubMed  CAS  Google Scholar 

  118. Wang K, Grivennikov SI, Karin M. Implications of anti-cytokine therapy in colorectal cancer and autoimmune diseases. Ann Rheum Dis. 2013;72(Suppl 2):ii100–3.

    Article  CAS  PubMed  Google Scholar 

  119. Nishina S, Yoshida K, Nakagawa K. [Mechanisms of antibody-based therapy against solid tumors]. Nihon rinsho Jpn J Clin Med. 2012;70(12):2093-2097.

    Google Scholar 

  120. Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I, Nakatsura T. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Intl J Oncol. 2015;46(1):28–36.

    Article  CAS  Google Scholar 

  121. Siegrist C-A. Vaccine immunology. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. Philadelphia: Elsevier Inc; 2008. p. 17.

    Chapter  Google Scholar 

  122. Gerdil C. The annual production cycle for influenza vaccine. Vaccine. 2003;21(16):1776–9.

    Article  PubMed  Google Scholar 

  123. Halstead SB. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenetic cascade. Rev Infect Dis. 1989;11(Supplement 4):S830–S9.

    Article  PubMed  Google Scholar 

  124. Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, et al. Relationship of preexisting Dengue Virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis. 2004;189(6):990–1000.

    Article  PubMed  Google Scholar 

  125. Whitehorn J, Simmons CP. The pathogenesis of dengue. Vaccines. 2011;29(42):7221–8.

    Article  CAS  Google Scholar 

  126. Chang JJ, Lewin SR. Immunopathogenesis of hepatitis B virus infection. Immunol Cell Biol. 2006;85(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  127. Thimme R, Oldach D, Chang K-M, Steiger C, Ray SC, Chisari FV. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J Exp Med. 2001;194(10):1395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wilkinson TM, Li CKF, Chui CSC, Huang AKY, Perkins M, Liebner JC, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med. 2012;18(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  129. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31(1):443–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eichelberger M, Allan W, Zijlstra M, Jaenisch R, Doherty PC. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med. 1991;174(4):875–80.

    Article  CAS  PubMed  Google Scholar 

  131. Doherty PC, Allan W, Eichelberger M, Carding SR. Roles of alphabeta and gammadelta T cell subsets in viral immunity. Annu Rev Immunol. 1992;10(1):123–51.

    Article  CAS  PubMed  Google Scholar 

  132. Graham MB, Braciale TJ. Resistance to and recovery from lethal influenza virus infection in B lymphocyte–deficient mice. J Exp Med. 1997;186(12):2063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Epstein SL, Lo C-Y, Misplon JA, Bennink JR. Mechanism of protective immunity against influenza virus infection in mice without antibodies. J Immunol. 1998;160(1):322–7.

    CAS  PubMed  Google Scholar 

  134. Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med. 2013;19(10):1305–12.

    Article  CAS  PubMed  Google Scholar 

  135. Wang Z, Wan Y, Qiu C, Quinones-Parra S, Zhu Z, Loh L, et al. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun. 2015;6. (Journal Article)

    Google Scholar 

  136. Bukowski JF, Kurane I, Lai CJ, Bray M, Falgout B, Ennis FA. Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes. J Virol. 1989;63(12):5086–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mathew A, Kurane I, Rothman AL, Zeng LL, Brinton MA, Ennis FA. Dominant recognition by human CD8+ cytotoxic T lymphocytes of dengue virus nonstructural proteins NS3 and NS1.2a. J Clin Invest. 1996;98(7):1684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Simmons CP, Dong T, Chau NV, Dung NTP, Chau TNB, Thao LTT, et al. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J Virol. 2005;79(9):5665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hatch S, Endy TP, Thomas S, Mathew A, Potts J, Pazoles P, et al. Intracellular cytokine production by dengue virus–specific T cells correlates with subclinical secondary infection. J Infect Dis. 2011;203(9):1282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006;28(1):112–25.

    Article  PubMed  Google Scholar 

  141. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996;4(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  142. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284(5415):825–9.

    Article  CAS  PubMed  Google Scholar 

  143. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77(1):68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Webster GJM, Reignat S, Brown D, Ogg GS, Jones L, Seneviratne SL, et al. Longitudinal analysis of CD8+ T cells specific for structural and nonstructural Hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy. J Virol. 2004;78(11):5707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Webster GJM, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology. 2000;32(5):1117–24.

    Article  CAS  PubMed  Google Scholar 

  146. Ferrari C, Penna A, Bertoletti A, Valli A, Antoni AD, Giuberti T, et al. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol. 1990;145(10):3442–9.

    CAS  PubMed  Google Scholar 

  147. Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol. 2006;87(6):1439–49.

    Article  CAS  PubMed  Google Scholar 

  148. Rehermann B, Lau D, Hoofnagle JH, Chisari FV. Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. J clin Invest. 1996;97(7):1655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;

    Google Scholar 

  150. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines. 2014;2(3):515–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pollard RB, Rockstroh JK, Pantaleo G, Asmuth DM, Peters B, Lazzarin A, et al. Safety and efficacy of the peptide-based therapeutic vaccine for HIV-1, Vacc-4x: a phase 2 randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2014;14(4):291–300.

    Article  CAS  PubMed  Google Scholar 

  152. Firbas C, Jilma B, Tauber E, Buerger V, Jelovcan S, Lingnau K, et al. Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects. Vaccine. 2006;24(20):4343–53.

    Article  CAS  PubMed  Google Scholar 

  153. Schlaphoff V, Klade CS, Jilma B, Jelovcan SB, Cornberg M, Tauber E, et al. Functional and phenotypic characterization of peptide-vaccine-induced HCV-specific CD8+ T cells in healthy individuals and chronic hepatitis C patients. Vaccine. 2007;25(37-38):6793–806.

    Article  CAS  PubMed  Google Scholar 

  154. Klade CS, Schuller E, Boehm T, von Gabain A, Manns MP. Sustained viral load reduction in treatment-naive HCV genotype 1 infected patients after therapeutic peptide vaccination. Vaccine. 2012;30(19):2943–50.

    Article  CAS  PubMed  Google Scholar 

  155. Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 2008;14(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  156. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res. 2008;14(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  157. Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA. 2010;107(26):11895–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kran AM, Sommerfelt MA, Sorensen B, Nyhus J, Baksaas I, Bruun JN, et al. Reduced viral burden amongst high responder patients following HIV-1 p24 peptide-based therapeutic immunization. Vaccine. 2005;23(31):4011–5.

    Article  CAS  PubMed  Google Scholar 

  159. Kran AM, Sorensen B, Nyhus J, Sommerfelt MA, Baksaas I, Bruun JN, et al. HLA- and dose-dependent immunogenicity of a peptide-based HIV-1 immunotherapy candidate (Vacc-4x). AIDS (London, England). 2004;18(14):1875–83.

    Article  CAS  Google Scholar 

  160. Kran AM, Jonassen TO, Sommerfelt MA, Lovgarden G, Sorensen B, Kvale D. Low frequency of amino acid alterations following therapeutic immunization with HIV-1 Gag p24-like peptides. AIDS (London, England). 2010;24(17):2609–18.

    Article  CAS  Google Scholar 

  161. Kran AM, Sommerfelt MA, Baksaas I, Sorensen B, Kvale D. Delayed-type hypersensitivity responses to HIV Gag p24 relate to clinical outcome after peptide-based therapeutic immunization for chronic HIV infection. APMIS. 2012;120(3):204–9.

    Article  CAS  PubMed  Google Scholar 

  162. Spearman P, Kalams S, Elizaga M, Metch B, Chiu YL, Allen M, et al. Safety and immunogenicity of a CTL multiepitope peptide vaccine for HIV with or without GM-CSF in a phase I trial. Vaccine. 2009;27(2):243–9.

    Article  CAS  PubMed  Google Scholar 

  163. Brekke K, Lind A, Holm-Hansen C, Haugen IL, Sorensen B, Sommerfelt M, et al. Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PloS one. 2014;9(11):e112556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. de Wit E, Fouchier RAM. Emerging influenza. J Clin Virol. 2008;41(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  165. The Lancet ID. Pandemic potential of emerging influenza. Lancet Infect Dis. 14(3):173.

    Google Scholar 

  166. Who UWB. State of the world’s vaccines and immunization: world health organization; 2009.

    Google Scholar 

  167. Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol. 2009;155(1):1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Orentas RJ, Kohler ME, Johnson BD. Suppression of anti-cancer immunity by regulatory T cells: Back to the future. Semin Cancer Biol. 2006;16(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  169. Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012;23(suppl 8):viii6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Waldner H. The role of innate immune responses in autoimmune disease development. Autoimmun Rev. 2009;8(5):400–4.

    Article  CAS  PubMed  Google Scholar 

  171. Hedrich CM. Shaping the spectrum—from autoinflammation to autoimmunity. Clinical Immunol. 2016;165:21–8.

    Google Scholar 

  172. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5(10):772–82.

    Article  CAS  PubMed  Google Scholar 

  173. Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2010;11(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  174. Ricano-Ponce I, Wijmenga C. Mapping of immune-mediated disease genes. Annu Rev Genomics Hum Genet. 2013;14(1):325–53.

    Article  CAS  PubMed  Google Scholar 

  175. Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10(10):602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kumar V, Wijmenga C, Xavier RJ. Genetics of immune-mediated disorders: from genome-wide association to molecular mechanism. Autoimmun Allergy Hypersensitivity. 2014;31(Journal Article):51–7.

    CAS  Google Scholar 

  177. Smilek DE, St. Clair EW. Solving the puzzle of autoimmunity: critical questions. F1000 Fac Rev. 2015;7(17)

    Google Scholar 

  178. Fujinami RS, Oldstone MB, Wroblewska Z, Frankel ME, Koprowski H. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci. 1983;80(8):2346–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, Strominger JL, et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med. 1994;179(1):279–90.

    Article  CAS  PubMed  Google Scholar 

  180. Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102.

    Article  CAS  PubMed  Google Scholar 

  181. Sfriso P, Ghirardello A, Botsios C, Tonon M, Zen M, Bassi N, et al. Infections and autoimmunity: the multifaceted relationship. J Leukoc Biol. 2010;87(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  182. Yu L, Rewers M, Gianani R, Kawasaki E, Zhang Y, Verge C, et al. Antiislet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab. 1996;81(12):4264–7.

    CAS  PubMed  Google Scholar 

  183. McGinty JW, Marre ML, Bajzik V, Piganellia JD. James EA. T cell epitopes and pos-translationally modified epitopes in Type 1 diabetes. Curr Diab Rep. 2015;15(90)

    Google Scholar 

  184. Ziegler R, Alper CA, Awdeh ZL, Castano L, Brink SJ, Soeldner JS, et al. Specific association of HLA-DR4 with increased prevalence and level of insulin autoantibodies in first-degree relatives of patients with type I diabetes. Diabetes. 1991;40(6):709–14.

    Article  CAS  PubMed  Google Scholar 

  185. Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(1)

    Google Scholar 

  186. Congia M, Patel S, Cope AP, De Virgiliis S, Sønderstrup G. T cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulin. Proc Natl Acad Sci. 1998;95(7):3833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Peakman M, Stevens EJ, Lohmann T, Narendran P, Dromey J, Alexander A, et al. Naturally processed and presented epitopes of the islet cell autoantigen IA-2 eluted from HLA-DR4. J Clin Invest. 1999;104(10):1449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature. 2005;435(7039):224–8.

    Article  CAS  PubMed  Google Scholar 

  189. Di Lorenzo TP, Peakman M, Roep BO. Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol. 2007;148(1):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med. 1999;5(9):1026–31.

    Article  CAS  PubMed  Google Scholar 

  191. Hassainya Y, Garcia-Pons F, Kratzer R, Lindo V, Greer F, Lemonnier FA, et al. Identification of naturally processed HLA-A2—restricted proinsulin epitopes by reverse immunology. Diabetes. 2005;54(7):2053–9.

    Article  CAS  PubMed  Google Scholar 

  192. Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, et al. CTLs are targeted to kill Î2 cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest. 2008;118(10):3390–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kaukinen K, Partanen J, Maki M, Collin P. HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol. 2002;97(3):695–9.

    Article  PubMed  Google Scholar 

  194. Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, et al. Comprehensive, quantitative mapping of T cell epitopes in Gluten in celiac disease. Sci Transl Med. 2010;2(41):41ra51.

    Article  PubMed  CAS  Google Scholar 

  195. Romanos J, Rosén A, Kumar V, Trynka G, Franke L, Szperl A, et al. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut. 2013;. (Journal Article)

    Google Scholar 

  196. Sollid LM, Qiao S, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 2012;64(6)

    Google Scholar 

  197. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297(5590):2275–9.

    Article  CAS  PubMed  Google Scholar 

  198. Dørum S, Bodd M, Fallang L-E, Bergseng E, Christophersen A, Johannesen MK, et al. HLA-DQ molecules as affinity matrix for identification of gluten T cell epitopes. J Immunol. 2014;193(9):4497–506.

    Article  PubMed  CAS  Google Scholar 

  199. Gianfrani C, Troncone R, Mugione P, Cosentini E, De Pascale M, Faruolo C, et al. Celiac disease association with CD8+ T cell responses: identification of a novel gliadin-derived HLA-A2-restricted epitope. J Immunol. 2003;170(5):2719–26.

    Article  CAS  PubMed  Google Scholar 

  200. Mazzarella G, Stefanile R, Camarca A, Giliberti P, Cosentini E, Marano C, et al. Gliadin activates HLA class I-restricted CD8+ T cells in celiac disease intestinal mucosa and induces the enterocyte apoptosis. Gastroenterology. 2008;134(4):1017–27.

    Article  CAS  PubMed  Google Scholar 

  201. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Fujinami RS. Viruses and autoimmune disease – two sides of the same coin? Trends Microbiol. 2001;9(8):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Olerup O, Hillert J. HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens. 1991;38(2):1–15.

    Article  CAS  PubMed  Google Scholar 

  204. Patsopoulos NA, Barcellos LF, Hintzen RQ, Schaefer C, van Duijn CM, Noble JA, et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and Non-HLA effects. PLoS Genet. 2013;9(11):e1003926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Steinman MDL. Multiple sclerosis: A coordinated immunological attack against Myelin in the central nervous system. Cell. 1996;85(3):299–302.

    Article  CAS  PubMed  Google Scholar 

  206. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis. Nature. 1990;346(6280):183–7.

    Article  CAS  PubMed  Google Scholar 

  207. Krogsgaard M, Wucherpfennig KW, Canella B, Hansen BE, Svejgaard A, Pyrdol J, et al. Visualization of Myelin basic protein (Mbp) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human Histocompatibility leukocyte antigen (Hla)-Dr2–Mbp 85–99 complex. J Exp Med. 2000;191(8):1395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kaushansky N, Altmann DM, Ascough S, David CS, Lassmann H, Ben-Nun A. HLA-DQB1∗0602 determines disease susceptibility in a new “Humanized” multiple sclerosis model in HLA-DR15 (DRB1∗1501;DQB1∗0602) transgenic mice. J Immunol. 2009;183(5):3531–41.

    Article  CAS  PubMed  Google Scholar 

  209. Kaushansky N, Altmann DM, David CS, Lassmann H, Ben-Nun A. DQB1∗0602 rather than DRB1∗1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP). J Neuroinflammation. 2012;9(1):1–15.

    Article  CAS  Google Scholar 

  210. Mars LT, Saikali P, Liblau RS, Arbour N. Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Mol Basis Mult Scler. 2011;1812(2):151–61.

    CAS  Google Scholar 

  211. Harbo HF, Lie BA, Sawcer S, Celius EG, Dai KZ, Oturai A, et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens. 2004;63(3):237–47.

    Article  CAS  PubMed  Google Scholar 

  212. Huseby ES, Huseby PG, Shah S, Smith R, Stadinski BD. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front Immunol. 2012;3. (Journal Article)

    Google Scholar 

  213. Berthelot L, Laplaud D-A, Pettré S, Ballet C, Michel L, Hillion S, et al. Blood CD8+ T cell responses against myelin determinants in multiple sclerosis and healthy individuals. Eur J Immunol. 2008;38(7):1889–99.

    Article  CAS  PubMed  Google Scholar 

  214. Solvason N, Lou Y-P, Peters W, Evans E, Martinez J, Ramirez U, et al. Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites. J Immunol. 2008;181(12):8298–307.

    Article  CAS  PubMed  Google Scholar 

  215. Yamamoto T, Hattori M, Yoshida T. Induction of T-cell activation or anergy determined by the combination of intensity and duration of T-cell receptor stimulation, and sequential induction in an individual cell. Immunology. 2007;121(3):383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Choi S, Schwartz RH. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Molecular Mechanisms Supporting Peripheral T cell Tolerance: Potential Therapeutic Approaches to Autoimmunity and Allograft Rejection. 2007;19(3):140-152.

    Google Scholar 

  217. Roep BO, Solvason N, Gottlieb PA, Abreu JRF, Harrison LC, Eisenbarth GS, et al. Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. Sci Transl Med. 2013;5(191):191ra82–ra82.

    Google Scholar 

  218. Garren H, Robinson WH, Krasulová E, Havrdová E, Nadj C, Selmaj K, et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol. 2008;63(5):611–20.

    Article  CAS  PubMed  Google Scholar 

  219. Ho PP, Fontoura P, Ruiz PJ, Steinman L, Garren H. An immunomodulatory GpG oligonucleotide for the treatment of autoimmunity via the innate and adaptive immune systems. J Immunol. 2003;171(9):4920–6.

    Article  CAS  PubMed  Google Scholar 

  220. Zhang XM, Huang Y, Li ZS, Lin H, Sui YF. Prediction and analysis of HLA-A2/A24-restricted cytotoxic T-lymphocyte epitopes of the tumor antigen MAGE-n using the artificial neural networks method on NetCTL1.2 Server. Oncol Lett. 2010;1(6):1097–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Shen H, Shao HW, Chen XH, Wu FL, Wang H, Huang ZL, et al. Identification of a novel HLA-A2-restricted mutated Survivin epitope and induction of specific anti-HCC CTLs that could effectively cross-recognize wild-type Survivin antigen. Cancer Immunol Immunother. 2013;62(2):393–403.

    Article  CAS  PubMed  Google Scholar 

  222. Nukaya I, Yasumoto M, Iwasaki T, Ideno M, Sette A, Celis E, et al. Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Intl J Cancer. 1999;80(1):92–7.

    Article  CAS  Google Scholar 

  223. Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A. Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A∗0201-binding affinity. J Immunol (Baltimore, Md: 1950). 2001;167(2):787–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramila Philip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Comber, J., Philip, R. (2020). Applications of Cutting-Edge Immunoproteomics Technology in Human Immunotherapy. In: Jain, P., Ndhlovu, L. (eds) Advanced Concepts in Human Immunology: Prospects for Disease Control. Springer, Cham. https://doi.org/10.1007/978-3-030-33946-3_2

Download citation

Publish with us

Policies and ethics