Skip to main content

Past, Present and Future in Forensic Human Identification

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

The Institute of Legal Medicine of Polytechnic University of Marche has been working in the field of forensic identification since 1980s, contributing actively to the development of the research and the application of new techniques. Before the DNA era, human identification was based on the analysis of surface polymorphic antigen systems of blood groups and HLA complex and then on the analysis of serum proteins and red cell polymorphic isozymes. The era of forensic DNA analysis began in 1985, when Alec Jeffreys described a genetic polymorphism in the human myoglobin gene. In 1987 Kary Mullis developed the polymerase chain reaction (PCR) and the revolutionary power of this technology was immediately perceived and the lab was quickly switched towards this new approach. The lab of the Institute of Legal Medicine is equipped with the most recent and high throughput instruments and technologies for DNA typing, has achieved the ISO/IEC 17025 accreditation for the participation to the National DNA Database of genetic profiles, and is a partner of the European network of forensic genetic labs. The lab is now one of the Italian leading centers in forensic genetics and it is actively involved in the most innovative research fields in forensic genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandrini F, Turchi C, Onofri V et al (2005) Multiplex PCR development of Y-chromosomal biallelic polymorphism for forensic applications. J Forensic Sci 50(3):519–525

    Article  Google Scholar 

  2. Amendt J, Campobasso CP, Gaudry E et al (2007) Best practice in forensic entomology–standards and guidelines. Int J Legal Med 121(2):90–104

    Article  Google Scholar 

  3. Ballantyne KN, Ralf A, Aboukhalid R et al (2014) Toward male individualization with rapidly mutating y-chromosomal short tandem repeats. Hum Mutat 35(8):1021–1032

    Article  Google Scholar 

  4. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83

    Article  Google Scholar 

  5. Bini C, Ceccardi S, Ferri G et al (2005) Development of heptaplex PCR system to analyse X chromosome STR loci from five Italian population sample. A collaborative study. Forensic Sci Int 153(2–3):231–236

    Article  Google Scholar 

  6. Buscemi L, Cucurachi N, Mencarelli R et al (1994) PCR typing of the locus D17S30 (YNZ22 VNTR) in an Italian population sample. Int J Legal Med 106(4):200–204

    Article  Google Scholar 

  7. Buscemi L, Cucurachi N, Mencarelli R et al (1995) PCR analysis of the short tandem repeat (STR) system HUMVWA31. Allele and genotype frequencies in an Italian population sample. Int J Legal Med 107(4):171–173

    Google Scholar 

  8. Buscemi L, Tagliabracci A, Sassaroli C et al (1998) Polymerase chain reaction typing of D21S11 short tandem repeat polymorphism by capillary electrophoresis. Allele frequencies and sequencing data in a population sample from central Italy. Forensic Sci Int 92(2–3):251–258

    Google Scholar 

  9. Butler JM, McCord BR, Jung JM et al (1995) Application of dual internal standards for precise sizing of polymerase chain reaction products using capillary electrophoresis. Electrophoresis 16(6):974–980

    Article  Google Scholar 

  10. Butler JM, Levin BC (1998) Forensic applications of mitochondrial DNA. Trends Biotechnol 16(4):158–162

    Article  Google Scholar 

  11. Butler JM, Schoske R, Vallone PM et al (2003) Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. J Forensic Sci. 48(4):908–911

    Google Scholar 

  12. Capelli C, Onofri V, Brisighelli F et al (2009) Moors and Saracens in Europe: estimating the medieval North African male legacy in southern Europe. Eur J Hum Genet 17(6):848–852

    Article  Google Scholar 

  13. Carnevali E, Lacerenza D, Severini S et al (2017) A GEFI collaborative exercise on DNA/RNA co-analysis and mRNA profiling interpretation. FSIGenet Suppl Ser 6:e18–e20

    Google Scholar 

  14. Cingolani M, Gobbi L, Pace PD et al (1981) Il polimorfismo dei sistemi ABO, Rh e Kell nella popolazione delle Marche. Quaderni di Medicina Legale 3:325

    Google Scholar 

  15. Cingolani M, Piermattei A, Refe C et al (1981) Studio del polimorfismo del sistema MNSs nella popolazione delle Marche. Quaderni di Medicina Legale 3:337

    Google Scholar 

  16. Cingolani M, Piermattei A, Tagliabracci A (1983) Il polimorfismo dell’adenilatochinasi (AK) eritrocitaria nella popolazione residente in provincia di Ancona. Quaderni di Medicina Legale 5:367

    Google Scholar 

  17. Cingolani M, Piermattei A, Tagliabracci A (1983) Il polimorfismo dell’Esterasi D eritrocitaria nella popolazione delle Marche. Quaderni di Medicina Legale 5:351

    Google Scholar 

  18. Coble MD, Bright JA (2019) Probabilistic genotyping software: an overview. FSIGenet 38:219–224

    Google Scholar 

  19. Giampaoli S, Alessandrini F, Berti A et al (2014) Forensic interlaboratory evaluation of the ForFLUID kit for vaginal fluids identification. J Forensic Leg Med 21:60–63

    Article  Google Scholar 

  20. Giampaoli S, Alessandrini F, Frajese GV et al (2018) Environmental microbiology: perspectives for legal and occupational medicine. Leg Med 35:34–43

    Article  Google Scholar 

  21. Gianni F, Mencarelli R, Tagliabracci A (1989) Studio del polimorfismo genetico della Gliossalasi I (GLO I) eritrocitaria nella popolazione della provincia di Ancona. La Trasfusione del Sangue XXXIII:1

    Google Scholar 

  22. Gill P, Sparkes R, Kimpton C (1997) Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci Int 89(3):185–197

    Google Scholar 

  23. Giorgetti R, Tagliabracci A, Agostini A et al (1991) Suitability of PCR methods for forensic investigation. Analysis of the 3’apoB VNTR system in an Italian population sample. Int J Legal Med 104(5):243–246

    Google Scholar 

  24. Gotze D (1977) The major histocompatibility system in man and animals. Springer, Berlin

    Book  Google Scholar 

  25. Grover R, Jiang H, Turingan RS et al (2017) FlexPlex27—highly multiplexed rapid DNA identification for law enforcement, kinship, and military applications. Int J Legal Med 131(6):1489–1501

    Article  Google Scholar 

  26. Ingman M, Kaessmann H, Pääbo S et al (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408(6813):708–713

    Google Scholar 

  27. Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific “fingerprints” of human DNA. Nature 314:76–79

    Article  Google Scholar 

  28. Jeffreys AJ, Brookfield JFY, Semeonoff R (1985) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818–819

    Article  Google Scholar 

  29. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  Google Scholar 

  30. Kayser M (2015) Forensic DNA Phenotyping: predicting human appearance from crime scene material for investigative purposes. FSIGenet 18:33–48

    Google Scholar 

  31. Kayser M (2017) Forensic use of Y-chromosome DNA: a general overview. Hum Genet 136:621–635

    Article  Google Scholar 

  32. Landsteiner K (1901) Uber agglutinationserscheinungen des normalen menschlichen Blutes. Wien Klin Wschr 14:1132–1134

    Google Scholar 

  33. Landsteiner K, Wiener AS (1940) An agglutinable factor in human blood recognized by immune sera for rhesus blood. Proc Soc Exp Biol 43:223

    Article  Google Scholar 

  34. Lao O, Lu TT, Nothnagel et al (2008) Correlation between genetic and geographic structure in Europe. Curr Biol. 18(16):1241–1248

    Google Scholar 

  35. Lattes L (1915) L’individualità del sangue umano e la sua dimostrazione medico-legale. Arch di antropologia criminale, psichiatria e medicina legale XXXVI:422–447, 538–554

    Google Scholar 

  36. Lattes L (1916) Sulla tecnica della prova di isoagglutinazione per la diagnosi individuale del sangue. Arch di antropologia criminale, psichiatria e medicina legale XXXVII:400–408

    Google Scholar 

  37. Lattes L (1927) I gruppi sanguigni e la ricerca della paternità. Atti della Società lombarda di scienze mediche e biologiche XVI:297–319

    Google Scholar 

  38. Lygo JE, Johnson PE, Holdaway DJ et al (1994) The validation of short tandem repeat (STR) loci for use in forensic casework. Int J Legal Med 107(2):77–89

    Article  Google Scholar 

  39. Madea B (2016) Methods for determining time of death. Forensic Sci Med Pathol 12:451–485

    Article  Google Scholar 

  40. Malkoc E, Neuteboom W (2007) The current status of forensic science laboratory accreditation in Europe. Forensic Sci Int 167(2–3):121–126

    Article  Google Scholar 

  41. Mazzanti M, Alessandrini F, Tagliabracci et al (2010) DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology. Forensic Sci Int. 195(1–3):99–102

    Google Scholar 

  42. Metcalf JL (2019) Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. FSIGenet 38:211–218

    Google Scholar 

  43. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzym 155:335–350

    Article  Google Scholar 

  44. Novroski NMM, Wendt FR, Woerner AE et al (2019) Expanding beyond the current core STR loci: an exploration of 73 STR markers with increased diversity for enhanced DNA mixture deconvolution. FSIGenet 38:121–129

    Google Scholar 

  45. Oldoni F, Kidd KK, Podini D (2019) Microhaplotypes in forensic genetics. FSIGenet 38:54–69

    Google Scholar 

  46. Onofri V, Alessandrini F, Turchi C et al (2006) Development of multiplex PCRs for evolutionary and forensic applications of 37 Y chromosome SNPs. Forensic Sci Int 157(1):23–35

    Article  Google Scholar 

  47. Onofri V, Alessandrini F, Turchi C et al (2007) Y-chromosome genetic structure in sub-Apennine populations of Central Italy by SNP and STR analysis. Int J Legal Med 121(3):234–237

    Article  Google Scholar 

  48. Onori N, Turchi C, Solito et al (2010) GABRA2 and alcohol use disorders: no evidence of an association in an Italian case-control study. Alcohol Clin Exp Res 34(4):659–668

    Google Scholar 

  49. Parson W, Ballard D, Budowle B et al (2016) Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. FSIGenet 22:54–63

    Google Scholar 

  50. Parson W (2018) Age estimation with DNA: from forensic DNA fingerprinting to forensic (Epi)Genomics: a mini-review. Gerontology 64:326–332

    Article  Google Scholar 

  51. Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65

    Article  Google Scholar 

  52. Presciuttini S, Caglià A, Alù M et al (2001) Y-chromosome haplotypes in Italy: the GE.F.I. collaborative database. Forensic Sci Int 122:184–188

    Article  Google Scholar 

  53. Presciuttini S, Cerri N, Turrina S et al (2006) Validation of a large Italian database of 15 STR loci. Forensic Sci Int 156(2–3):266–268

    Article  Google Scholar 

  54. Purps J, Siegert S, Willuweit S et al (2014) A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Sci Int Genet 12:12–23

    Article  Google Scholar 

  55. Sijen T (2015) Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. FSIGenet 18:21–32

    Google Scholar 

  56. Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1(2):93–99

    Article  Google Scholar 

  57. Tagliabracci A, Piermattei A, Cingolani M (1982) La distribuzione dei fattori sierici gruppo-specifici G1 m (a), G1 m(x), G3 m(b) e Km(1) nella popolazione residente nella provincia di Ancona. Quaderni di Medicina Legale 4:313

    Google Scholar 

  58. Tagliabracci A (1985) La determinazione dei fenotipi della fosfatasi acida eritrocitaria (AcP) e l’identificazione delle fosfatasi acide seminale (SAP) e vaginale (VA) mediante isoelettrofocalizzazione. Zacchia 3:261

    Google Scholar 

  59. Tagliabracci A, Gianni F (1986) Studio delle frequenze geniche del marcatore Gc mediante isoelettrofocalizzazione in provincia di Ancona. Archivio di Medicina Legale e delle Assicurazioni 8:47

    Google Scholar 

  60. Tagliabracci A, Giorgetti R, Cingolani M (1986) Contributo allo studio del polimorfismo dell’alfa-1-antitripsina e dei sottotipi PiM in un campione di popolazione marchigiana. Archivio di Medicina Legale e delle Assicurazioni 8:123

    Google Scholar 

  61. Tagliabracci A, Giorgetti R (1986) PGM1 polymorphism in the population of Ancona by isoelectric focusing. Adv Forensic Haemogenet 1:286

    Article  Google Scholar 

  62. Tagliabracci A, Giorgetti R, Agostini A (1990) Le indagini biologiche per l’accertamento della paternità nel laboratorio di ematologia forense di Ancona. Arc Med Leg Ass 12:169

    Google Scholar 

  63. Tagliabracci A, Giorgetti R, Cingolani M et al (1990) Applicazione della PCR nell’indagine medico-forense del DNA. Studio di un nucleo familiare con i sistemi MCT 118, ApoB e YNZ 22. Atti Conv Soc Med Med Leg, p 146

    Google Scholar 

  64. Tagliabracci A, Paoli M (1990) Determinazione isoelettroforetica del polimorfismo della transferrina in un campione di popolazione marchigiana. Archivio di Medicina Legale e delle Assicurazioni 9:90

    Google Scholar 

  65. Tagliabracci A, Giorgetti R, Agostini A et al (1992) Frequency of HLA DQA1 alleles in an Italian population. Int J Legal Med 105(3):161–164

    Article  Google Scholar 

  66. Tagliabracci A, Giorgetti R, Agostini A et al (1992) Analysis of D1S80 (pMCT118) locus polymorphism in an Italian population sample by the polymerase chain reaction. In: Advances in forensic haemogenetics, vol 4, p 109

    Google Scholar 

  67. Tagliabracci A, Buscemi L, Cucurachi N et al (1994) PCR typing of the COL2A1 system: allelic frequencies in two population samples from North and Central Italy. In: Advances in Forensic Haemogenetics, vol 5, p 590

    Google Scholar 

  68. Tagliabracci A, Buscemi L, Bianchi F et al (1998) Polymorphism and sequence variations of the HumCD4 pentameric microsatellite in an Italian population sample. J Forensic Sci 43(4):841–844

    Article  Google Scholar 

  69. Tagliabracci A, Buscemi L, Sassaroli C et al (1999) Allele typing of short tandem repeats by capillary electrophoresis. Int J Legal Med 113(1):26–32

    Article  Google Scholar 

  70. Tagliabracci A, Turchi C, Buscemi L et al (2001) Polymorphism of the mitochondrial DNA control region in Italians. Int J Legal Med 114(4–5):224–228

    Article  Google Scholar 

  71. Turchi C, Onofri V, Alessandrini F et al (2006) Multiplex genotyping of 22 autosomal SNPs and its application in the forensic field. Prog Forensic Genet 11(1288):40–42

    Google Scholar 

  72. Turchi C, Buscemi L, Previderè C et al (2008) Ge.F.I. Group. Italian mitochondrial DNA database: results of the Ge.F.I-ISFG collaborative exercise and proficiency testing. Int J Legal Med 2008 122(3):199–204

    Google Scholar 

  73. Turchi C, Buscemi L, Giacchino E et al (2009) Polymorphisms of mtDNA control region in Tunisian and Moroccan populations: an enrichment of forensic mtDNA databases with Northern Africa data. Forensic Sci Int Genet 3:166–172

    Google Scholar 

  74. Turchi C, Piva F, Solito G et al (2012) ADH4 intronic variations are associated with alcohol dependence: results from an Italian case-control association study. Pharmacogenetics Genomics 22:79–94

    Article  Google Scholar 

  75. Turchi C, Stanciu F, Paselli G et al (2016) The mitochondrial DNA makeup of Romanians: a forensic mtDNA control region database and phylogenetic characterization. Forensic Sci Int: Genet 24:136–142

    Article  Google Scholar 

  76. Turchi C, Pesaresi M, Tagliabracci A (2017) A microhaplotypes panel for forensic genetics using massive parallel sequencing. FSIGenet Suppl Ser 6:e117–e118

    Google Scholar 

  77. Vidaki A, Kayser M (2017) From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol 18:238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Turchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alessandrini, F., Onofri, V., Turchi, C., Buscemi, L., Pesaresi, M., Tagliabracci, A. (2020). Past, Present and Future in Forensic Human Identification. In: Longhi, S., et al. The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-33832-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33832-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33831-2

  • Online ISBN: 978-3-030-33832-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics