Skip to main content

Effects of Female Reproductive Hormones on Sports Performance

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Abstract

Women of reproductive age experience regular physical changes in their bodies due to hormonal alterations during the course of their ovulatory menstrual cycles, as well as during pregnancy and with the administration of oral contraceptive pills. The variations in endogenous and exogenous levels of estrogen and progesterone have the potential to affect sports performance through several possible mechanisms: changes in energy/fuel sources; effects on various components of physical fitness, body temperature control, and fluid retention; psychological changes; and, finally, changes in the risks of certain injuries. Existing studies in this important area have used many different methodologies to assess and characterize both menstrual cycle phase and aspects of physical fitness and sports performance. Based on the evidence to date, it can be recommended that athletes and coaches monitor each female athlete’s individual responses to these potential periodic perturbations in physical performance during training and competition. Oral contraceptives can also have some independent effects depending on the formulation used. In certain cases, it may be advantageous to utilize these medications to manipulate the menstrual cycle around important competitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wearing MP, Yuhasz M, Campbell R, et al. The effect of the menstrual cycle on tests of physical fitness. J Sports Med Phys Fitness. 1972;12:38–41.

    CAS  PubMed  Google Scholar 

  2. Bale P, Davies J. Effect of menstruation and contraceptive pill on the performance of physical education students. Br J Sports Med. 1983;7:46–50.

    Article  Google Scholar 

  3. Quadagno D, Faquin L, Lim G-N, et al. The menstrual cycle: does it affect athletic performance? Phys Sportsmed. 1991;19:121–4.

    Article  Google Scholar 

  4. Van Look PF, Baird DT. Regulatory mechanisms during the menstrual cycle. Eur J Obstet Gynecol Reprod Biol. 1980;11(2):121–44.

    Article  PubMed  Google Scholar 

  5. Goodman LR, Warren MP. The female athlete and menstrual function. Curr Opin Obstet Gynecol. 2005;17(5):466–70.

    Article  PubMed  Google Scholar 

  6. Jurkowski JEH, Jones NL, Walker WE, et al. Ovarian hormonal responses to exercise. J Appl Physiol. 1978;44:109–14.

    Article  CAS  PubMed  Google Scholar 

  7. Bonen A, Lind WY, MacIntyre KP, et al. Effects of exercise on serum concentrations of FSH, LH, progesterone, and estradiol. Eur J Appl Physiol. 1979;42:15–23.

    Article  CAS  Google Scholar 

  8. Montagnani CF, Arena B, Maffuli N. Estradiol and progesterone during exercise in healthy untrained women. Med Sci Sports Exerc. 1992;24:764–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lebrun CM. Effect of the different phases of the menstrual cycle and oral contraceptives on athletic performance. Sports Med. 1993;16:400–30.

    Article  CAS  PubMed  Google Scholar 

  10. Lebrun CM. The effect of the phase of the menstrual cycle and the birth control pill on athletic performance. Clin Sports Med. 1994;13:419–41.

    CAS  PubMed  Google Scholar 

  11. Frankovich R, Lebrun CM. Menstrual cycle, contraception, and performance. Clin Sports Med. 2000;19(2):251–71.

    Article  CAS  PubMed  Google Scholar 

  12. Lebrun CM. Effects of the menstrual cycle and oral contraceptives on sports performance. In: Drinkwater BL, editor. Women in sport: the IOC encyclopedia of sports medicine. Oxford: Blackwell Science; 2000. p. 37–61.

    Chapter  Google Scholar 

  13. Reilly T. The menstrual cycle and human performance: an overview. Biol Rhythm Res. 2000;31:29–40.

    Article  CAS  Google Scholar 

  14. Lebrun CM, Rumball JS. Relationship between athletic performance and menstrual cycle. Curr Womens Health Rep. 2001;1(3):232–40.

    CAS  PubMed  Google Scholar 

  15. Constantini NW, Dubnov G, Lebrun CM. The menstrual cycle and sport performance. Clin Sports Med. 2005;24(2):e51–82.

    Article  PubMed  Google Scholar 

  16. Constantini NW, Lebrun CM, Dubnov-Raz G. Menstrual cycle and sports performance. In: Micheli LJ, editor. Encyclopedia of sports medicine. 4 vols. Thousand Oaks: Sage Publications; 2010. p. 861–3.

    Google Scholar 

  17. Burrows M, Bird S. The physiology of the highly trained female endurance runner. Sports Med. 2000;30(4):281–300.

    Article  CAS  PubMed  Google Scholar 

  18. Janse de Jonge XA. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33(11):833–51.

    Article  PubMed  Google Scholar 

  19. Vanheest JL, Mahoney CE, Rodgers CD. Oral contraceptive use and physical performance (Chapter 19. The endocrine system in sports and exercise). In: Kraemer WJ, Rogol AD, editors. The encyclopaedia of sports medicine—an IOC Medical Commission Publication. Malden, MA: Blackwell Publishers; 2005. p. 250–60.

    Google Scholar 

  20. Burrows M, Peters CE. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37:557–74.

    Article  PubMed  Google Scholar 

  21. Rechichi C, Dawson V, Goodman C. Athletic performance and the oral contraceptive. Int J Sports Physiol Perform. 2009;4(2):151–62.

    Article  PubMed  Google Scholar 

  22. Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40(3):207–27.

    Article  PubMed  Google Scholar 

  23. Owen JA. Physiology of the menstrual cycle. Am J Clin Nutr. 1975;28(4):333–8.

    Article  CAS  PubMed  Google Scholar 

  24. Landgren BM, Unden AL, Diczfalusy E. Hormonal profile of the cycle in 68 normally menstruating women. Acta Endocrinol. 1980;94(1):89–98.

    Article  CAS  Google Scholar 

  25. Williams TJ, Krahenbuhl GS. Menstrual cycle phase and running economy. Med Sci Sports Exerc. 1997;29(12):1609–18.

    Article  CAS  PubMed  Google Scholar 

  26. World Health Organization (WHO). Medical eligibility for contraception use. 4th ed. Geneva: WHO Press; 2010. http://whqlibdoc.who.int/publications/2010/9789241563888_eng.pdf

    Google Scholar 

  27. Bennell K, White S, Crossley K. The oral contraceptive pill: a revolution for sportswomen. Br J Sports Med. 1999;33(4):231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaunitz AM. Choosing menstruation whether…and when. Contraception. 2000;62:277–84.

    Article  CAS  PubMed  Google Scholar 

  29. Archer DF. Menstrual-cycle related symptoms: a review of the rationale for continuous use of oral contraceptives. Contraception. 2006;74:359–66.

    Article  CAS  PubMed  Google Scholar 

  30. Wiegratz I, Thaler CJ. Hormonal contraception—what kind, when, and for whom? Dtsch Arztebl Int. 2011;108(28–29):495–506. https://doi.org/10.3238/arzebl.2011.0495.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Petitti DB. Combination estrogen–progestin oral contraceptives. N Engl J Med. 2003;349:1443–50.

    Article  CAS  PubMed  Google Scholar 

  32. Sitruk-Ware R. Reprint of: pharmacological profile of progestins. Maturitas. 2008;61(1–2):151–7.

    Article  PubMed  Google Scholar 

  33. Kaunitz AM. Long-acting injectable contraception with depot medroxyprogesterone acetate. Am J Obstet Gynecol. 1994;170:1543–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mestad RE, Kenerson J, Peipert JF. Reversible contraception update: the importance of long-acting reversible contraception. Postgrad Med. 2009;121(4):18–25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Longcope C. Adrenal and gonadal androgen secretion in normal females. Clin Endocrinol Metab. 1986;15(2):213–28.

    Article  CAS  PubMed  Google Scholar 

  36. Charkoudian N, Joyner MJ. Physiologic considerations for exercise performance in women. Clin Chest Med. 2004;25(2):247–55.

    Article  PubMed  Google Scholar 

  37. Collins P. Estrogen and cardiovascular dynamics. Am J Sports Med. 1996;24:S30–2.

    Article  CAS  PubMed  Google Scholar 

  38. Collins P. Vascular aspects of oestrogen. Maturitas. 1996;23:217–26.

    Article  CAS  PubMed  Google Scholar 

  39. Sarrel PM. Ovarian hormones and the circulation. Maturitas. 1990;590:287–98.

    Article  Google Scholar 

  40. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340:1801–11.

    Article  CAS  PubMed  Google Scholar 

  41. Cicinelli E, Ignarro LJ, Lograno M, et al. Circulating levels of nitric oxide in fertile women in relation to the menstrual cycle. Fertil Steril. 1996;66:1036–8.

    Article  CAS  PubMed  Google Scholar 

  42. Collins P, Rosano GMC, Jiang C, et al. Cardiovascular protection by oestrogen: a calcium antagonist effect? Cardiovasc Res. 1995;30:161–5.

    Article  Google Scholar 

  43. Collins P, Beale CM, Rosano GMC. Oestrogen as a calcium channel blocker. Eur Heart J. 1996;17(Suppl D):27–31.

    Article  CAS  PubMed  Google Scholar 

  44. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28:521–74.

    Article  CAS  PubMed  Google Scholar 

  45. Chakrabarti S, Lekontseva O, Davidge ST. Estrogen is a modulator of vascular inflammation. IUBMB Life. 2008;60:376–82.

    Article  CAS  PubMed  Google Scholar 

  46. Xing D, Nozell S, Chen Y-F, et al. Estrogen and mechanisms of vascular protection. Arterioscler Thromb Vasc Biol. 2009;29(3):289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reckelhoff JF. Sex steroids, cardiovascular disease, and hypertension: unanswered questions and some speculations. Hypertension. 2005;45:170–4.

    Article  CAS  PubMed  Google Scholar 

  48. Friday KE, Drinkwater BL, Bruemmer B, et al. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake. J Clin Endocrinol Metab. 1993;77:1605–9.

    CAS  PubMed  Google Scholar 

  49. Solomon CG, Hu FB, Dunaif A, et al. Menstrual cycle irregularity and risk for future cardiovascular disease. J Clin Endocrinol Metab. 2002;87:2013–7.

    Article  CAS  PubMed  Google Scholar 

  50. Bairey Merz CN, Johnson BD, Sharaf BL, et al. Hypoestrogenemia of hypothalamic origin and coronary artery disease in premenopausal women: a report from the NHLBI-sponsored WISE study. J Am Coll Cardiol. 2003;41:413–9.

    Article  PubMed  CAS  Google Scholar 

  51. De Souza MJ, Williams NI. Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update. 2004;10(5):433–48.

    Article  PubMed  Google Scholar 

  52. Hoch AZ, Jurva JW, Staton MA, et al. Athletic amenorrhea and endothelial dysfunction. WMJ. 2007;106:301–6.

    PubMed  Google Scholar 

  53. O’Donnell E, Harvey PJ, Goodman JM, et al. Long-term estrogen deficiency lowers regional blood flow, resting systolic blood pressure, and heart rate in exercising premenopausal women. Am J Physiol Endocrinol Metab. 2007;292:E1401–9.

    Article  PubMed  CAS  Google Scholar 

  54. Lanser EM, Zach KN, Hoch AS. The female athlete triad and endothelial dysfunction. PM&R. 2011;3:458–65.

    Article  Google Scholar 

  55. Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, et al. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005;90:1354–9.

    Article  CAS  PubMed  Google Scholar 

  56. Yoshida N, Ikeda H, Sugi K, et al. Impaired endothelium dependent and -independent vasodilation in young female athletes with exercise-associated amenorrhea. Arterioscler Thromb Vasc Biol. 2006;26:231–2.

    Article  CAS  PubMed  Google Scholar 

  57. Soleimany G, Dadgostar H, Lotfian S, et al. Bone mineral changes and cardiovascular effects among female athletes with chronic menstrual dysfunction. Asian J Sports Med. 2012;3(1):53–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hoch AZ, Lynch SL, Jurva JW, et al. Folic acid supplementation improves vascular function in amenorrheic runners. Clin J Sport Med. 2010;20:205–10.

    Article  PubMed  Google Scholar 

  59. Rickenlund A, Eriksson MJ, Schenck-Gustafsson K, et al. Oral contraceptives improve endothelial function in amenorrheic athletes. J Clin Endocrinol Metab. 2005;90:3162–7.

    Article  CAS  PubMed  Google Scholar 

  60. Bayliss DA, Millhorn DE. Central neural mechanisms of progesterone action: application to the respiratory system. J Appl Physiol. 1992;73(2):393–404.

    Article  CAS  PubMed  Google Scholar 

  61. England SJ, Farhi LE. Fluctuations in alveolar CO2 and in base excess during the menstrual cycle. Respir Physiol. 1976;26:157–61.

    Article  CAS  PubMed  Google Scholar 

  62. Schoene RB, Robertson HT, Pierson DJ, et al. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol. 1981;50:1300–5.

    Article  CAS  PubMed  Google Scholar 

  63. Dutton K, Blanksby BA, Morton AR. CO2 sensitivity changes during the menstrual cycle. J Appl Physiol. 1989;67:517–22.

    Article  CAS  PubMed  Google Scholar 

  64. Sansores RH, Abboud RT, Kennell C, et al. The effect of menstruation on the pulmonary carbon monoxide diffusing capacity. Am J Respir Crit Care Med. 1995;152:381–4.

    Article  CAS  PubMed  Google Scholar 

  65. Beck SA. Asthma in the female: hormonal effect and pregnancy. Allergy Asthma Proc. 2001;22:1–4.

    Article  CAS  PubMed  Google Scholar 

  66. Pernoll ML, Metcalfe J, Kovach PA, et al. Ventilation during rest and exercise in pregnancy and postpartum. Respir Physiol. 1975;25(3):295–310.

    Article  CAS  PubMed  Google Scholar 

  67. Forbes L. Do exogenous oestrogens and progesterone influence asthma? Thorax. 1999;54:265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nicklas BJ, Hackney AC, Sharp RL. The menstrual cycle and exercise: performance, muscle glycogen, and substrate responses. Int J Sports Med. 1989;10:264–9.

    Article  CAS  PubMed  Google Scholar 

  69. Bunt JC. Metabolic actions of estradiol: significance for acute and chronic exercise responses. Med Sci Sports Exerc. 1990;22:286–90.

    CAS  PubMed  Google Scholar 

  70. Hackney AC, McCracken-Compton MA, Ainsworth B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int J Sport Nutr. 1994;4:299–308.

    Article  CAS  PubMed  Google Scholar 

  71. Hackney AC, Muoio D, Meyer WR. The effect of sex steroid hormones on substrate oxidation during prolonged submaximal exercise in women. Jpn J Physiol. 2000;50(5):489–94.

    Article  CAS  PubMed  Google Scholar 

  72. Campbell SE, Febbraio MA. Effects of ovarian hormones on exercise metabolism. Curr Opin Clin Nutr Metab Care. 2001;4(6):515–20.

    Article  CAS  PubMed  Google Scholar 

  73. D’Eon T, Braun B. The roles of estrogen and progesterone in regulating carbohydrate and fat utilization at rest and during exercise. J Womens Health Gend Based Med. 2002;11(3):225–37.

    Article  PubMed  Google Scholar 

  74. D’Eon TM, Sharoff C, Chipkin SR, et al. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am J Physiol Endocrinol Metab. 2002;283:E1046–55.

    Article  PubMed  Google Scholar 

  75. Ruby BC, Robergs RA. Gender differences in substrate utilisation during exercise. Sports Med. 1994;17:393–410.

    Article  CAS  PubMed  Google Scholar 

  76. Tarnopolsky MA, Atkinson SA, Phillips SA, et al. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol. 1995;78:1360–8.

    Article  CAS  PubMed  Google Scholar 

  77. James AP, Lorraine M, Cullen D, et al. Muscle glycogen supercompensation: absence of a gender-related difference. Eur J Appl Physiol. 2001;85(6):533–8.

    Article  CAS  PubMed  Google Scholar 

  78. Lavoie JM, Dionne N, Helie R, et al. Menstrual cycle phase dissociation of blood glucose homeostasis during exercise. J Appl Physiol. 1987;62:1084–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hausswirth C, Le Meur Y. Physiological and nutritional aspects of post-exercise recovery: specific recommendations for female athletes. Sports Med. 2011;41(10):861–82.

    Article  PubMed  Google Scholar 

  80. Isacco L, Duche P, Boisseau N. Influence of hormonal status on substrate utilization at rest and during exercise in the female population. Sports Med. 2012;42(4):327–42.

    Article  PubMed  Google Scholar 

  81. Diamond MP, Wentz AC, Cherrington AD. Alterations in carbohydrate metabolism as they apply to reproductive endocrinology. Fertil Steril. 1988;50:387–97.

    Article  CAS  PubMed  Google Scholar 

  82. Godsland IF. The influence of female sex steroids on glucose metabolism and insulin action. J Intern Med. 1996;240(Suppl 738):1–60.

    Google Scholar 

  83. Goodman MP. Are all estrogens created equal? A review of oral vs. transdermal therapy. J Women’s Health. 2012;212(2):161–9.

    Article  Google Scholar 

  84. Reinke U, Ansah B, Voigt KD. Effect of the menstrual cycle on carbohydrate and lipid metabolism in normal females. Acta Endocrinol. 1972;69(4):762–8.

    Article  CAS  Google Scholar 

  85. Campbell SE, Angus DJ, Febbraio MA. Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. Am J Physiol Endocrinol Metab. 2001;281(4):E817–25.

    Article  CAS  PubMed  Google Scholar 

  86. Lopez LM, Grimes DA, Schulz KF. Steroidal contraceptives: effect on carbohydrate metabolism in women without diabetes mellitus. Cochrane Database Syst Rev. 2009;(4):CD006133. https://doi.org/10.1002/14651858.CD006133.pub3.

  87. Lopez LM, Grimes DA, Schulz KR. Steroidal contraceptives: effect on carbohydrate metabolism in women without diabetes mellitus. Cochrane Database Syst Rev. 2012;(4):CD006133. https://doi.org/10.1002/14651858.CD006133.pub4.

  88. Sitruk-Ware R, Nath A. Metabolic effects of contraceptive steroids. Rev Endocr Metab Disord. 2011;12(2):63–75.

    Article  CAS  PubMed  Google Scholar 

  89. Paternoster DM, Lazzarin L, Dalla PS. Contraception in diabetic women. Minerva Ginecol. 1997;49(12):561–4.

    CAS  PubMed  Google Scholar 

  90. Stachenfeld NS. Sex hormone effects on body fluid regulation. Exerc Sport Sci Rev. 2008;36(3):152–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Olson BR, Forman MR, Lanza E, et al. Relation between sodium balance and menstrual cycle symptoms in normal women. Ann Intern Med. 1996;125:564–7.

    Article  CAS  PubMed  Google Scholar 

  92. White CP, Hitchcock CL, Vigna YM, et al. Fluid retention over the menstrual cycle: 1-year data from the prospective ovulation cohort. Obstet Gynecol Int. 2011;2011:138451.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rickenlund A, Carlström K, Ekblom B, et al. Effects of oral contraceptives on body composition and physical performance in female athletes. J Clin Endocrinol Metab. 2004;89(9):4364–70.

    Article  CAS  PubMed  Google Scholar 

  94. Stanczyk FZ. All progestins are not created equal. Steroids. 2003;68(10–13):879–90.

    Article  CAS  PubMed  Google Scholar 

  95. De Souza MJ, West SL, Jamal SA, et al. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43:140–8.

    Article  PubMed  CAS  Google Scholar 

  96. Williams NI, Reed JL, Leidy HJ, et al. Estrogen and progesterone exposure is reduced in response to energy deficiency in women aged 25–40 years. Hum Reprod. 2010;25(9):2328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ackerman KE, Misra M. Bone health and the female athlete triad in adolescent athletes. Phys Sportsmed. 2011;39(1):131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Feldmann JM, Belsha JP, Eissa MA, et al. Female adolescent athletes’ awareness of the connection between menstrual status and bone health. J Pediatr Adolesc Gynecol. 2011;24(5):311–4.

    Article  PubMed  Google Scholar 

  99. Kleerekoper M, Brienza RS, Schultz LR, et al. Oral contraceptive use may protect against low bone mass. Henry Ford Hospital Osteoporosis Cooperative Research Group. Arch Intern Med. 1991;151:1971–6.

    Article  CAS  PubMed  Google Scholar 

  100. Liu SL, Lebrun CM. Effect of oral contraceptives and hormone replacement therapy on bone mineral density in premenopausal and perimenopausal women: a systematic review. Br J Sports Med. 2006;40(1):11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Scholes D, Ichikawa L, LaCroix AZ, et al. Oral contraceptive use and bone density in adolescent and young adult women. Contraception. 2010;81(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Berenson AB, Breitkopf CR, Grady JJ, et al. Effects of hormonal contraception on bone mineral density after 24 months of use. Obstet Gynecol. 2004;103:899–906.

    Article  CAS  PubMed  Google Scholar 

  103. Allali F, El Mansouri L, Abourazzuak FZ, et al. The effect of past use of oral contraceptive on bone mineral density, bone biochemical markers and muscle strength in healthy pre and post menopausal women. BMC Womens Health. 2009;9:31. 10P1186/1472-6874-9-31.

    Google Scholar 

  104. Wanichsetakul P, Kamudhamas A, Watanaruangkovit P, et al. Bone mineral density at various anatomic bone sites in women receiving combined oral contraceptives and depot-medroxyprogesterone acetate for contraception. Contraception. 2002;65:407–10.

    Article  CAS  PubMed  Google Scholar 

  105. Marshall J. Thermal changes in the normal menstrual cycle. BMJ. 1963;12:102–4.

    Article  Google Scholar 

  106. Horvath SM, Drinkwater BL. Thermoregulation and the menstrual cycle. Aviat Space Environ Med. 1982;53:790–4.

    CAS  PubMed  Google Scholar 

  107. Stephenson LA, Kolka MA. Thermoregulation in women. Exerc Sport Sci Rev. 1993;21:231–62.

    Article  CAS  PubMed  Google Scholar 

  108. Kelly G. Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern Med Rev. 2006;11(4):278–93.

    PubMed  Google Scholar 

  109. Nakayama T, Suzuki M, Ishizuka N. Action of progesterone on preoptic thermosensitive neurones. Nature. 1975;258(5530):80.

    Article  CAS  PubMed  Google Scholar 

  110. White MD, Cabanac M. Exercise hyperpnea and hyperthermia in humans. J Appl Physiol. 1996;81(3):1249–54.

    Article  CAS  PubMed  Google Scholar 

  111. Hirata K, Nagasaka T, Hirai A, et al. Effects of human menstrual cycle on thermoregulatory vasodilation during exercise. Eur J Appl Physiol. 1986;54:559–65.

    Article  CAS  Google Scholar 

  112. Kolka MA, Stephenson LA. Effect of luteal phase elevation in core temperature on forearm blood flow during exercise. J Appl Physiol. 1997;82(4):1079–83.

    Article  CAS  PubMed  Google Scholar 

  113. Hessemer V, Bruck K. Influence of menstrual cycle on shivering, skin blood flow, and sweating responses measured at night. J Appl Physiol. 1985;59:1902–10.

    Article  CAS  PubMed  Google Scholar 

  114. Hessemer V, Bruck K. Influence of menstrual cycle on thermoregulatory, metabolic, and heart rate responses to exercise at night. J Appl Physiol. 1985;59:1911–9.

    Article  CAS  PubMed  Google Scholar 

  115. Frascarolo P, Schutz Y, Jequier E. Decreased thermal conductance during the luteal phase of the menstrual cycle in women. J Appl Physiol. 1990;69:2029–33.

    Article  CAS  PubMed  Google Scholar 

  116. Cunningham DJ, Cabanac M. Evidence from behavioral thermoregulatory responses of a shift in setpoint temperature related to the menstrual cycle. J Physiol Paris. 1971;63(3):236–8.

    CAS  PubMed  Google Scholar 

  117. Harvey OL, Crocket HE. Individual differences in temperature changes during the course of the menstrual cycle. Hum Biol. 1932;4:453–68.

    Google Scholar 

  118. Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol. 2000;88(5):1643–9.

    Article  CAS  PubMed  Google Scholar 

  119. Charkoudian N, Johnson JM. Female reproductive hormones and thermoregulatory control of skin blood flow. Exerc Sport Sci Rev. 2000;28(3):108–12.

    CAS  PubMed  Google Scholar 

  120. Halbreich U, Tworek H. Altered serotonergic activity in women with dysphoric premenstrual syndromes. Int J Psychiatry Med. 1993;23:1–27.

    Article  CAS  PubMed  Google Scholar 

  121. Posthuma BW, Bass JJ, Bull SB, et al. Detecting changes in functional ability in women with premenstrual syndrome. Am J Obstet Gynecol. 1987;156:275–8.

    Article  CAS  PubMed  Google Scholar 

  122. Hagemann G, Ugur T, Schleussner E, et al. Changes in brain size during the menstrual cycle. PLoS One. 2011;6(2):e14655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sherwin BB. Hormones, mood, and cognitive functioning in postmenopausal women. Obstet Gynecol. 1996;87:20S–6.

    Article  CAS  PubMed  Google Scholar 

  124. Zlotnik A, Grenbaum BF, Mohar B, et al. The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol Reprod. 2011;84(3):581–6.

    Article  CAS  PubMed  Google Scholar 

  125. Joseph JE, Swearingen JE, Corbly CR, et al. Influence of estradiol on functional brain organization for working memory. NeuroImage. 2012;59(3):2923–31.

    Article  CAS  PubMed  Google Scholar 

  126. Pompili A, Arnone B, Gasbarri A. Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology. 2012;37(9):1379–96.

    Article  CAS  PubMed  Google Scholar 

  127. Park EM, Cho S, Frys KA, et al. Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J Cereb Blood Flow Metab. 2006;26:392–401.

    Article  CAS  PubMed  Google Scholar 

  128. Mihalik JP, Ondrak KS, Buskiewieca KM, et al. The effects of menstrual cycle phase on clinical measure of concussion in healthy college-aged females. J Sci Med Sport. 2009;12:383–7.

    Article  PubMed  Google Scholar 

  129. Singh M, Su C. Progesterone and neuroprotection. Horm Behav. 2013;63:284.

    Article  CAS  PubMed  Google Scholar 

  130. Mordecai KL, Rubin LH, Maki PM. Effects of menstrual cycle phase and oral contraceptive use on verbal memory. Horm Behav. 2008;54(2):286–93.

    Article  CAS  PubMed  Google Scholar 

  131. Cicinelli E, De Tommaso M, Cianca A, et al. Oral contraceptive therapy modulates hemispheric asymmetry in spatial attention. Contraception. 2011;84(6):634–6.

    Article  CAS  PubMed  Google Scholar 

  132. Griksienne R, Ruksenas O. Effects of hormonal contraceptives on mental rotation and verbal fluency. Psychoneuroendocrinology. 2011;36(8):1239–48.

    Article  CAS  Google Scholar 

  133. Kraemer RR, Francois M, Castracane VD. Estrogen mediation of hormone responses to exercise. Metabolism. 2012;61(10):1337–46.

    Article  CAS  PubMed  Google Scholar 

  134. Costa AM, Breitenfeld L, Siva AJ. Genetic inheritance effects on endurance and muscle strength: an update. Sports Med. 2012;42(6):449–58.

    Article  PubMed  Google Scholar 

  135. Tucker R, Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br J Sports Med. 2012;46(8):555–61.

    Article  PubMed  Google Scholar 

  136. Noakes TD. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab. 2011;36(1):23–5.

    Article  PubMed  Google Scholar 

  137. Noakes TD. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol. 2012;3(82):1–13.

    Google Scholar 

  138. Fortney SM, Beckett WS, Carpenter AJ, et al. Changes in plasma volume during bed rest: effects of menstrual cycle and estrogen administration. J Appl Physiol. 1988;65(2):525–33.

    Article  CAS  PubMed  Google Scholar 

  139. Jurkowski JEH, Jones NL, Toews CJ, et al. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol. 1981;51:1493–9.

    Article  CAS  PubMed  Google Scholar 

  140. Dombovy ML, Bonekat HW, Williams TH, et al. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sports Exerc. 1987;19:111–7.

    Article  CAS  PubMed  Google Scholar 

  141. Van Beek E, Houben AJHM, Van Es PN, et al. Peripheral haemodynamics and renal function in relation to the menstrual cycle. Clin Sci. 1997;91:163–8.

    Article  Google Scholar 

  142. Cherney DZI, Scholey JW, Cattran DC, et al. The effect of oral contraceptives on the nitric oxide system and renal function. Am J Physiol Renal Physiol. 2007;293:F1539–44.

    Article  CAS  PubMed  Google Scholar 

  143. Zengin K, Tokac M, Duzenli MA, et al. Influence of menstrual cycle on cardiac performance. Maturitas. 2007;58(1):70–4.

    Article  PubMed  Google Scholar 

  144. Smekal F, von Duvillard SP, Frigo P, et al. Menstrual cycle: no effect on exercise cardiorespiratory variables or blood lactate concentration. Med Sci Sports Exerc. 2007;39(7):1098–106.

    Article  CAS  PubMed  Google Scholar 

  145. Moran VH, Leathard HL, Coley J. Cardiovascular functioning during the menstrual cycle. Clin Physiol. 2000;20(6):496–504.

    Article  CAS  PubMed  Google Scholar 

  146. Adkisson EJ, Cassey DP, Beck DT, et al. Central, peripheral and resistance arterial reactivity: fluctuates during the phases of the menstrual cycle. Exp Biol Med (Maywood). 2010;235(1):111–8.

    Article  CAS  Google Scholar 

  147. Carter JR, Lawrence JE, Klein JS. Menstrual cycle alters sympathetic neural responses to orthostatic stress in young, eumenorrheic women. Am J Physiol Endocrinol Metab. 2009;297(1):E85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Carter JR, Klein JC, Schwartz CE. Effects of oral contraceptives on sympathetic nerve activity during orthostatic stress in young, healthy women. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R9–14.

    Article  CAS  PubMed  Google Scholar 

  149. Sita A, Miller SB. Estradiol, progesterone, and cardiovascular response to stress. Psychoneuroendocrinology. 1996;21:339–46.

    Article  CAS  PubMed  Google Scholar 

  150. Rosano GMC, Leonardo F, Sarrel PM, et al. Cyclical variation in paroxysmal supraventricular tachycardia in women. Lancet. 1996;347:786–8.

    Article  CAS  PubMed  Google Scholar 

  151. Mukamal KJ, Muller JE, Maclure M, et al. Variation in the risk of onset of acute myocardial infarction during the menstrual cycle. Am J Cardiol. 2002;90:49–51.

    Article  PubMed  Google Scholar 

  152. Hamelin BA, Méthot J, Arsenault M, et al. Influence of the menstrual cycle on the timing of acute coronary events in premenopausal women. Am J Med. 2003;114:599–602.

    Article  PubMed  Google Scholar 

  153. Rosano FMC, Sarrel PM, Poole-Wilson PA, et al. Beneficial effect of estrogen on exercise-induced myocardial ischemia in women with coronary artery disease. Lancet. 1993;342:133–6.

    Article  CAS  PubMed  Google Scholar 

  154. Littler WA, Bojorges-Bueno R, Banks J. Cardiovascular dynamics in women during the menstrual cycle and oral contraceptive therapy. Thorax. 1974;29:567–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lehtovirta P, Kuikka J, Pyorala T. Hemodynamic effects of oral contraceptives during exercise. Int J Gynaecol Obstet. 1977;15:35–7.

    Article  CAS  PubMed  Google Scholar 

  156. Birch K, Cable N, George K. Combined oral contraceptives do not influence post-exercise hypotension in women. Exp Physiol. 2002;87(5):623–32.

    Article  CAS  PubMed  Google Scholar 

  157. George KP, Birch KM, Jones B, et al. Estrogen variation and resting left ventricular structure and function in young healthy females. Med Sci Sports Exerc. 2000;32(2):297–303.

    Article  CAS  PubMed  Google Scholar 

  158. Willekes C, Hoogland HJ, Keizer HA. Three months’ use of third-generation oral contraceptives does not affect artery wall properties. Ultrasound Med Biol. 1999;25(5):723–8.

    Article  CAS  PubMed  Google Scholar 

  159. Berenson AB, Rahman M, Wilkinson G. Effect of injectable and oral contraceptives on serum lipids. Obstet Gynecol. 2009;114(4):786–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rott H. Thrombotic risks of oral contraceptives. Curr Opin Obstet Gynecol. 2012;24(4):235–40.

    Article  PubMed  Google Scholar 

  161. Hannaford PC. Epidemiology of the contraceptive pill and venous thromboembolism. Thromb Res. 2011;127(3):S30–4.

    Article  CAS  PubMed  Google Scholar 

  162. Manzoli L, De Vito C, Marzuillo C, et al. Oral contraceptives and venous thromboembolism: a systematic review and meta-analysis. Drug Saf. 2012;36(3):191–205.

    Google Scholar 

  163. Beller JP, McCartney CR. Cardiovascular risk and combined oral contraceptives: clinical decisions in settings of uncertainty. Am J Obstet Gynecol. 2013;208(1):39–41. https://doi.org/10.1016/j.ajog.2012.01.037. Epub 2012 Feb 1.

    Article  PubMed  Google Scholar 

  164. Farha S, Asosingh J, Laskowski D, et al. Pulmonary gas transfer related to markers of angiogenesis during the menstrual cycle. J Appl Physiol. 2007;103:1789–95.

    Article  CAS  PubMed  Google Scholar 

  165. Bemben DA, Salm PC, Salm AJ. Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fitness. 1995;35:257–62.

    CAS  PubMed  Google Scholar 

  166. MacNutt MJ, De Souza MJ, Tomczak SE, et al. Resting and exercise ventilatory chemosensitivity across the menstrual cycle. J Appl Physiol. 2012;112(5):737–47.

    Article  CAS  PubMed  Google Scholar 

  167. Beidleman BA, Rock PB, Muza SR, et al. Exercise VE and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol. 1999;86(5):1519–26.

    Article  CAS  PubMed  Google Scholar 

  168. Brutsaert TD, Spielvogel H, Caceres E, et al. Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m. J Exp Biol. 2002;205(Pt 2):233–9.

    PubMed  Google Scholar 

  169. Takase K, Nishiyasu T, Asano K. Modulating effects of the menstrual cycle on cardiorespiratory responses to exercise under acute hypobaric hypoxia. Jpn J Physiol. 2002;52(6):553–60.

    Article  PubMed  Google Scholar 

  170. Vrieze A, Postma DS, Kerstjens HA. Perimenstrual asthma: a syndrome without known cause or cure. J Allergy Clin Immunol. 2003;112(2):271–82.

    Article  PubMed  Google Scholar 

  171. Chhabra SK. Premenstrual asthma. Indian J Chest Dis Allied Sci. 2005;47:109–16.

    CAS  PubMed  Google Scholar 

  172. Chandler MH, Schuldheisz S, Phillips BA, et al. Premenstrual asthma: the effect of estrogen on symptoms, pulmonary function, and beta 2-receptors. Pharmacotherapy. 1997;17:224–34.

    CAS  PubMed  Google Scholar 

  173. Balzano F, Fuschill S, Melillo F, et al. Asthma and sex hormones. Allergy. 2001;56:13–20.

    Article  CAS  PubMed  Google Scholar 

  174. Boschetto P, Miotto D, Mapp CE. Chapter 8: Women and asthma. Eur Respir Monit. 2003;25:90–102.

    Google Scholar 

  175. Haggerty CL, Ness RB, Kelsey S, et al. The impact of estrogen and progesterone on asthma. Ann Allergy Asthma Immunol. 2003;90:284–91; quiz 291–3, 347.

    Article  CAS  PubMed  Google Scholar 

  176. Stanford KR, Mickleborough TD, Ray S, et al. Influence of menstrual cycle phase on pulmonary function in asthmatic athletes. Eur J Appl Physiol. 2006;96:703–10.

    Article  PubMed  Google Scholar 

  177. Salam MT, Wenten M, Gilliland FD. Endogenous and exogenous sex steroid hormones and asthma and wheeze in young women. J Allergy Clin Immunol. 2006;117:1001–7.

    Article  CAS  PubMed  Google Scholar 

  178. Townsend EA, Meuchel LW, Thompson MA, et al. Estrogen increases nitric-oxide production in human bronchial epithelium. J Pharmacol Exp Ther. 2011;339(3):815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Oguzulgen IK, Turktas H, Erbas D. Airway inflammation in premenstrual asthma. J Asthma. 2002;39(6):517–22.

    Article  PubMed  Google Scholar 

  180. Thornton JS, Lewis J, Lebrun CM, et al. Clinical characteristics of women with menstrual-linked asthma. Respir Med. 2012;(9):106, 1236–1143. https://doi.org/10.1016/j.rmed.2012.05.003.

    Article  PubMed  Google Scholar 

  181. Ensom MH. Gender-based differences and menstrual cycle-related changes in specific diseases: implications for pharmacotherapy. Pharmacotherapy. 2000;20:523–39.

    Article  CAS  PubMed  Google Scholar 

  182. Choi IS. Gender-specific asthma treatment. Allergy Asthma Immunol Res. 2011;3(2):74–80.

    Article  CAS  PubMed  Google Scholar 

  183. Magadle R, Berar-Yanay N, Weiner P. Long-acting bronchodilators in premenstrual exacerbation of asthma. Respir Med. 2001;95(9):740–3.

    Article  CAS  PubMed  Google Scholar 

  184. Pasaoglu F, Mungan D, Abadoglu O, et al. Leukotriene receptor antagonists: a good choice in the treatment of premenstrual asthma? J Asthma. 2008;45:95–9.

    Article  CAS  PubMed  Google Scholar 

  185. Tan KS, McFarlane LC, Lipworth BJ. Modulation of airway reactivity and peak flow variability in asthmatics receiving the oral contraceptive pill. Am J Respir Crit Care Med. 1997;155:1273–7.

    Article  CAS  PubMed  Google Scholar 

  186. Derimanov GS, Oppenheimer J. Exacerbation of premenstrual asthma caused by an oral contraceptive. Ann Allergy Asthma Immunol. 1998;81:243–6.

    Article  CAS  PubMed  Google Scholar 

  187. McNeill AW, Mozingo E. Changes in the metabolic cost of standardized work associated with the use of an oral contraceptive. J Sports Med Phys Fitness. 1981;21(3):238–44.

    CAS  PubMed  Google Scholar 

  188. Montes A, Lally D, Hale RW. The effects of oral contraceptives on respiration. Fertil Steril. 1983;39(4):515–9.

    Article  CAS  PubMed  Google Scholar 

  189. Notelovitz M, Zauner C, McKenzie L, et al. The effect of low-dose oral contraceptives on cardiorespiratory function, coagulation, and lipids in exercising young women: a preliminary report. Am J Obstet Gynecol. 1987;156(3):591–8.

    Article  CAS  PubMed  Google Scholar 

  190. Lebrun CM, Petit MA, McKenzie DC, et al. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: a randomised controlled trial. Br J Sports Med. 2003;37(4):315–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Packard KA, Lenz TL, Elder B, et al. Oral contraceptive use may attenuate menstrual cycle-induced ventilatory changes in endurance trained runners. Open Sports Med J. 2011;5:19–25.

    Article  Google Scholar 

  192. Hackney AC. Effects of the menstrual cycle on resting muscle glycogen content. Horm Metab Res. 1990;22:647.

    Article  CAS  PubMed  Google Scholar 

  193. Lamont LS. Lack of influence of the menstrual cycle on blood lactate. Phys Sportsmed. 1986;14:159–63.

    Article  CAS  PubMed  Google Scholar 

  194. De Souza MJ, Maguire MS, Rubin KR, et al. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc. 1990;22(5):575–80.

    Article  PubMed  Google Scholar 

  195. Kanaley JA, Boileau RA, Bahr JA, et al. Substrate oxidation and GH responses to exercise are independent of menstrual phase and status. Med Sci Sports Exerc. 1992;24(8):873–80.

    Article  CAS  PubMed  Google Scholar 

  196. Eston RG, Burke EJ. Effects of the menstrual cycle on selected responses to short constant-load exercise. J Sports Sci. 1984;2:145–53.

    Article  Google Scholar 

  197. McCracken M, Ainsworth B, Hackney AC. Effects of menstrual cycle phase on the blood lactate responses to exercise. Eur J Appl Physiol. 1994;69:174–5.

    Article  CAS  Google Scholar 

  198. Paul DR, Mulroy SM, Horner JA, et al. Carbohydrate-loading during the follicular phase of the menstrual cycle: effects on muscle glycogen and exercise performance. Int J Sport Nutr Exerc Metab. 2001;11(4):431–41.

    Article  Google Scholar 

  199. Bailey SP, Zacher CM, Mittleman KD. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol. 2000;88(2):690–7.

    Article  CAS  PubMed  Google Scholar 

  200. McLay RT, Thomson CD, Williams SM, et al. Carbohydrate loading and female endurance athlete: effect of menstrual cycle phase. Int J Sport Nutr Exerc Metab. 2007;17(2):189–205.

    Article  CAS  PubMed  Google Scholar 

  201. Dean TM, Perreault L, Mazzeo RS, et al. No effect of menstrual cycle phase on lactate threshold. J Appl Physiol. 2003;95:2537–43.

    Article  PubMed  Google Scholar 

  202. Ruby BC, Robergs RA, Waters DL, et al. Effects of estradiol on substrate turnover during exercise in amenorrheic females. Med Sci Sports Exerc. 1997;29(9):1160–9.

    Article  CAS  PubMed  Google Scholar 

  203. Galliven EA, Singh A, Michelson D, et al. Hormonal and metabolic responses to exercise across time of day and menstrual cycle phase. J Appl Physiol. 1997;83(6):1822–31.

    Article  CAS  PubMed  Google Scholar 

  204. Forsyth JJ, Reilly T. The combined effect of time of day and menstrual cycle on lactate threshold. Med Sci Sports Exerc. 2005;37(12):2046–53.

    Article  CAS  PubMed  Google Scholar 

  205. Ashley CD, Kramer ML, Bishop P. Estrogen and substrate metabolism: a review of contradictory research. Sports Med. 2000;29(4):221–7.

    Article  CAS  PubMed  Google Scholar 

  206. Bonen A, Haynes FW, Graham TE. Substrate and hormonal responses to exercise in women using oral contraceptives. J Appl Physiol. 1991;70(5):1917–27.

    Article  CAS  PubMed  Google Scholar 

  207. Zderic TW, Coggan AR, Ruby BC. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J Appl Physiol. 2001;90(2):447–53.

    Article  CAS  PubMed  Google Scholar 

  208. Casazza GA, Jacobs KA, Suh SH, et al. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. J Appl Physiol. 2004;97(1):302–9.

    Article  CAS  PubMed  Google Scholar 

  209. Devries MC, Hamadeh MJ, Phillips SM, et al. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1120–8.

    Article  CAS  PubMed  Google Scholar 

  210. Horton TJ, Miller EK, Bourret K. No effect of menstrual cycle phase on glycerol or palmitate kinetics during 90 min of moderate exercise. J Appl Physiol. 2006;100:917–25.

    Article  CAS  PubMed  Google Scholar 

  211. Suh SH, Casazza GA, Horning MA, et al. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 2003;94(1):285–94.

    Article  CAS  PubMed  Google Scholar 

  212. Jacobs KA, Casazza GA, Suh SH, et al. Fatty acid reesterification but not oxidation is increased by oral contraceptive use in women. J Appl Physiol. 2005;98(5):1720–31.

    Article  CAS  PubMed  Google Scholar 

  213. Wells CL, Horvath S. Heat stress responses related to the menstrual cycle. J Appl Physiol. 1973;35:1–5.

    Article  CAS  PubMed  Google Scholar 

  214. Wells CL, Horvath SM. Responses to exercise in a hot environment as related to the menstrual cycle. J Appl Physiol. 1974;36:299–302.

    Article  CAS  PubMed  Google Scholar 

  215. Stephenson LA, Kolka MA, Wilkerson JE. Metabolic and thermoregulatory responses to exercise during the human menstrual cycle. Med Sci Sports Exerc. 1982;14:270–5.

    Article  CAS  PubMed  Google Scholar 

  216. Marsh SA, Jenkins DG. Physiological responses to the menstrual cycle. Implications for the development of heat illness in female athletes. Sports Med. 2002;32(10):601–14.

    Article  PubMed  Google Scholar 

  217. Inoue Y, Tanaka Y, Omori K, et al. Sex- and menstrual cycle-related differences in sweating and cutaneous blood flow in response to passive heat exposure. Eur J Appl Physiol. 2005;94(3):323–32.

    Article  PubMed  Google Scholar 

  218. Kuwahara T, Inoue Y, Taniguchi M, et al. Effects of physical training on heat loss responses of young women to passive heating in relation to menstrual cycle. Eur J Appl Physiol. 2005;94(4):376–85.

    Article  PubMed  Google Scholar 

  219. Ichinose TK, Inoue Y, Hirata M, et al. Enhanced heat loss responses induced by short-term endurance training in exercising women. Exp Physiol. 2009;94(1):90–102.

    Article  PubMed  Google Scholar 

  220. Walters TJ, Ryan KL, Tate LM, et al. Exercise in the heat is limited by a critical internal temperature. J Appl Physiol. 2000;89(2):799–806.

    Article  CAS  PubMed  Google Scholar 

  221. Booth J, Marino F, Ward JJ. Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc. 1997;29(7):943–9.

    Article  CAS  PubMed  Google Scholar 

  222. Duffield R, Green R, Castle P, et al. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med Sci Sports Exerc. 2010;42(3):577–84.

    Article  PubMed  Google Scholar 

  223. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  224. Pivarnik JM, Marichal CJ, Spillman T, et al. Menstrual cycle phase affects temperature regulation during endurance exercise. J Appl Physiol. 1992;72:543–8.

    Article  CAS  PubMed  Google Scholar 

  225. Gonzalez-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):1032–9.

    Article  CAS  PubMed  Google Scholar 

  226. Carpenter AJ, Nunneley SA. Endogenous hormones subtly alter women’s response to heat stress. J Appl Physiol. 1988;65(5):2313–7.

    Article  CAS  PubMed  Google Scholar 

  227. Davies CT. Influence of skin temperature on sweating and aerobic performance during severe work. J Appl Physiol. 1979;47(4):770–7.

    Article  CAS  PubMed  Google Scholar 

  228. Galloway SDR, Maughan RJ. Effect of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240–9.

    Article  CAS  PubMed  Google Scholar 

  229. Grucza R, Pekkarinen H, Titov E, et al. Influence of the menstrual cycle and oral contraceptives on thermoregulatory responses to exercise in young women. Eur J Appl Physiol. 1993;67:279–85.

    Article  CAS  Google Scholar 

  230. Garcia AM, Lacerda MG, Fonseca IAT, et al. Luteal phase of the menstrual cycle increases sweating rate during exercise. Braz J Med Biol Res. 2006;39(9):1255–61.

    Article  CAS  PubMed  Google Scholar 

  231. Stephenson LA, Kolka MA. Plasma volume during heat stress and exercise in women. Eur J Appl Physiol Occup Physiol. 1988;57(4):373–81.

    Article  CAS  PubMed  Google Scholar 

  232. Sunderland C, Nevill M. Effect of the menstrual cycle on performance of intermittent, high-intensity shuttle running in a hot environment. Eur J Appl Physiol. 2003;888(45):345–52.

    Article  CAS  Google Scholar 

  233. Martin JR, Buono MJ. Oral contraceptives elevate core temperature and heart rate during exercise in the heat. Clin Physiol. 1997;17:401–9.

    Article  CAS  PubMed  Google Scholar 

  234. Rogers SM, Baker MA. Thermoregulation during exercise in women who are taking oral contraceptives. Eur J Appl Physiol. 1997;75:34–8.

    Article  CAS  Google Scholar 

  235. Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol. 1999;80(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  236. Robertson LA, Higgs LS. Menstrual cycle variations in physical work capacity, postexercise blood lactate, and perceived exertion (abstract). Can J Appl Sport Sci. 1983;8:220.

    Google Scholar 

  237. Birch KM, Reilly T. The effect of eumenorrheic menstrual cycle phase on physiological responses to a repeated lifting task. Can J Appl Physiol. 1997;22:148–60.

    Article  CAS  PubMed  Google Scholar 

  238. Birch KM, Reilly T. Manual handling performance: the effects of menstrual cycle phase. Ergonomics. 1999;42(20):1317–32.

    Article  CAS  PubMed  Google Scholar 

  239. Petrofsky JS, LeDonne DM, Rinehart JS, et al. Isometric strength and endurance during the menstrual cycle. Eur J Appl Physiol. 1976;35:1–10.

    Article  CAS  Google Scholar 

  240. Wirth JC, Lohman TG. The relationship of static muscle function to use of oral contraceptives. Med Sci Sports Exerc. 1982;14:16–20.

    Article  CAS  PubMed  Google Scholar 

  241. Davies BN, Elford JCC, Jamieson KF. Variations in performance of simple muscle tests at different phases of the menstrual cycle. J Sports Med Phys Fitness. 1991;31:532–7.

    CAS  PubMed  Google Scholar 

  242. Higgs SL, Robertson LA. Cyclic variations in perceived exertion and physical work capacity in females. Can J Appl Sport Sci. 1981;6:191–6.

    CAS  PubMed  Google Scholar 

  243. Dibrezzo R, Fort IL, Brown B. Relationships among strength, endurance, weight, and body fat during three phases of the menstrual cycle. J Sports Med Phys Fitness. 1991;31:89–94.

    CAS  PubMed  Google Scholar 

  244. Janse de Jonge XA, Boot CR, Thom JM, et al. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol. 2001;530(Pt 1):161–6.

    Article  CAS  PubMed  Google Scholar 

  245. Lebrun CM, McKenzie DC, Prior JC, et al. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc. 1995;27(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  246. Dieli-Conwright CM, Spektor TM, Rice JC, et al. Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. J Appl Physiol. 2009;107:1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Greising SM, Baltgalvis KA, Lowe DA, et al. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2009;64(10):1071–81.

    Article  PubMed  CAS  Google Scholar 

  248. Phillips SK, Sanderson AG, Birch K, et al. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol. 1996;496:551–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Greeves JP, Cable NT, Luckas MJ, et al. Effects of acute changes in oestrogen on muscle function of the first dorsal interosseous muscle in humans. J Physiol. 1997;500(Pt 1):265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Fridén C, Hirschberg AL, Saartok T. Muscle strength and endurance do not significantly vary across 3 phases of the menstrual cycle in moderately active premenopausal women. Clin J Sport Med. 2003;13(4):238–41.

    Article  PubMed  Google Scholar 

  251. Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate, and fatiguability during the human menstrual cycle. J Physiol. 1996;493:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bambaeichi E, Reilly T, Cable NT, et al. The isolated and combined effects of menstrual cycle phase and time-of-day on muscle strength of eumenorrheic females. Chronobiol Int. 2004;21(4–5):645–60.

    Article  CAS  PubMed  Google Scholar 

  253. Dawson EA, Reilly T. Menstrual cycle, exercise and health. Biol Rhythm Res. 2009;40(1):99–119.

    Article  Google Scholar 

  254. Petrofsky J, Al Malty A, Suh HJ. Isometric endurance, body and skin temperature and limb and skin blood flow during the menstrual cycle. Med Sci Monit. 2007;13(3):CR111–7.

    PubMed  Google Scholar 

  255. Salomoni S, Soares FA, de Oliveira Nascimento FA, et al. Gender differences in muscle fatigue of the biceps brachii and influences of female menstrual cycle in electromyography variables. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2598–601.

    Google Scholar 

  256. Soares FA, Salomoni SE, Veneziano WH, et al. On the behavior of surface electromyographic variables during the menstrual cycle. Physiol Meas. 2011;32(5):543–57.

    Article  PubMed  Google Scholar 

  257. Kadi F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol. 2008;154(3):522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Alexander GM, Sherwin BB, Bancroft J, et al. Testosterone and sexual behavior in oral contraceptive users and nonusers: a prospective study. Horm Behav. 1990;24(3):388–402.

    Article  CAS  PubMed  Google Scholar 

  259. Enea C, Boisseau N, Fargeas-Gluck MA, et al. Circulating androgens in women: exercise-induced changes. Sports Med. 2011;41(1):1–15.

    Article  PubMed  Google Scholar 

  260. Brownlee KK, Hackney AC. Steroid hormone responses to intensive prolonged endurance exercise in women. Acta Kinesiol (University Tartu). 2007;12:6–9.

    Google Scholar 

  261. Enea C, Boisseau N, Ottavy M, et al. Effects of menstrual cycle, oral contraception, and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Eur J Appl Physiol. 2009;106(3):365–73.

    Article  CAS  PubMed  Google Scholar 

  262. Nakamura Y, Aizawa K, Imai T, et al. Hormonal responses to resistance exercise during different menstrual cycle states. Med Sci Sports Exerc. 2011;43(6):967–73.

    Article  CAS  PubMed  Google Scholar 

  263. Reis E, Frick U, Schmidtbleicher D. Frequency variations of strength training sessions triggered by the phases of the menstrual cycle. Int J Sports Med. 1995;16(8):545–50.

    Article  CAS  PubMed  Google Scholar 

  264. Enns DB, Tiidus PM. The influence of estrogen on skeletal muscle. Sex matters. Sports Med. 2010;40(1):41–58.

    Article  PubMed  Google Scholar 

  265. Lowe DA, Baltgalvis KA, Greising SA. Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010;38(2):61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Elliott KJ, Cable NT, Reilly T, et al. Effect of menstrual cycle phase on the concentration of bioavailable 17-beta oestradiol and testosterone and muscle strength. Clin Sci. 2003;105:663–9.

    Article  CAS  Google Scholar 

  267. Elliott KJ, Cable NT, Reilly T. Does oral contraceptive use affect maximum force production in women? Br J Sports Med. 2005;39(1):15–9. Erratum in: Br J Sports Med. 2005;39(3):184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Bushman B, Masterson G, Nelsen J. Anaerobic power performance and the menstrual cycle: eumenorrheic and oral contraceptive users. J Sports Med Phys Fitness. 2006;46(1):132–7.

    CAS  PubMed  Google Scholar 

  269. Peters C, Burrows M. Androgenicity of the progestin in oral contraceptives does not affect maximal leg strength. Contraception. 2006;74(6):487–91.

    Article  CAS  PubMed  Google Scholar 

  270. Nichols AW, Hetzler RK, Villanueva RJ, et al. Effects of combination oral contraceptives on strength development in women athletes. J Strength Cond Res. 2008;22(5):1625–32.

    Article  PubMed  Google Scholar 

  271. Bernardes RP, Radomski MW. Growth hormone responses to continuous and intermittent exercise in females under oral contraceptive therapy. Eur J Appl Physiol Occup Physiol. 1998;79(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  272. Hansen M, Langberg H, Holm L, et al. Effect of administration of oral contraceptives on the synthesis and breakdown of myofibrillar proteins in young women. Scand J Med Sci Sports. 2011;21(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  273. Thompson HS, Hyatt JP, De Souza MJ, et al. The effects of oral contraceptives on delayed onset muscle soreness following exercise. Contraception. 1997;56:59–65.

    Article  CAS  PubMed  Google Scholar 

  274. Kendall B, Eston R. Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med. 2002;32(2):103–23.

    Article  PubMed  Google Scholar 

  275. Redman LM, Scroop GS, Norman RJ. Impact of menstrual cycle phase on the exercise status of young sedentary women. Eur J Appl Physiol. 2003;90:505–13.

    Article  PubMed  Google Scholar 

  276. Gamberale F, Strindberg L, Wahlberg I. Female work capacity during the menstrual cycle: physiological and psychological reactions. Scand J Work Environ Health. 1975;1(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  277. Girija B, Veeraiah S. Effect of different phases of menstrual cycle on physical working capacity in Indian population. Indian J Physiol Pharmacol. 2011;55(2):165–9.

    CAS  PubMed  Google Scholar 

  278. Nohara M, Momoeda M, Kubota T, et al. Menstrual cycle and menstrual pain problems and related risk factors among Japanese female workers. Ind Health. 2011;49(2):228–34.

    Article  PubMed  Google Scholar 

  279. Daggett A, Davies V, Boobis L. Physiological and biochemical responses to exercise following oral contraceptive use (abstract). Med Sci Sports Exerc. 1983;15:174.

    Article  Google Scholar 

  280. Bryner RE, Toffle RC, Ullrich IH, et al. Effect of low dose oral contraceptives on exercise performance. Br J Sports Med. 1996;30:36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Rechichi C, Dawson B, Goodman C. Oral contraceptive phase has no effect on endurance test. Int J Sports Med. 2008;29(4):277–81.

    Article  CAS  PubMed  Google Scholar 

  282. Lynch NJ, Nimmo MA. Effects of menstrual cycle phase and oral contraceptive use on intermittent exercise. Eur J Appl Physiol Occup Physiol. 1998;78(6):565–72.

    Article  CAS  PubMed  Google Scholar 

  283. Giacomoni M, Falgairette G. Decreased submaximal oxygen uptake during short duration oral contraceptive use: a randomized cross-over trial in premenopausal women. Ergonomics. 2000;43(10):1559–70.

    Article  CAS  PubMed  Google Scholar 

  284. Casazza GA, Suh SH, Miller BF, et al. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93(5):1698–702.

    Article  CAS  PubMed  Google Scholar 

  285. Redman LM, Scroop GC, Westlander G, et al. Effect of a synthetic progestin on the exercise status of sedentary young women. J Clin Endocrinol Metab. 2005;90:3830–7.

    Article  CAS  PubMed  Google Scholar 

  286. De Bruyn-Prevost R, Masset C, Sturbois X. Physiological response from 18–25 years women to aerobic and anaerobic physical fitness tests at different periods during the menstrual cycle. J Sports Med. 1984;24:144–8.

    Google Scholar 

  287. Doolittle TL, Engbretsen J. Performance variations during the menstrual cycle. J Sports Med. 1972;12:54–8.

    CAS  Google Scholar 

  288. Parish HC, Jakeman PM. The effects of menstruation upon repeated maximal sprint performance. J Sports Sci. 1987;1:78.

    Google Scholar 

  289. Bale P, Nelson G. The effects of menstruation on performance of swimmers. Aust J Sci Med Sport. 1985;March:19–21.

    Google Scholar 

  290. Miscek CM, Potteiger JA, Nau KL, et al. Do varying environment and menstrual cycle conditions affect anaerobic power output in female athletes? J Strength Cond Res. 1997;11:219–23.

    Google Scholar 

  291. Masterson G. The impact of the menstrual phases on anaerobic power performance in collegiate women. J Strength Cond Res. 1999;13(4):325–9.

    Google Scholar 

  292. Okudan N, Gokbel H, Ucok K, et al. Serum leptin concentration and anaerobic performance do not change during the menstrual cycle of young females. Neuroendocrinol Lett. 2005;26(4):297–300.

    CAS  PubMed  Google Scholar 

  293. Middleton LE, Wenger HA. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur J Appl Physiol. 2006;96(1):53–8.

    Article  PubMed  Google Scholar 

  294. Tsampoukos A, Peckham EA, James R, et al. Effect of menstrual cycle phase on sprinting performance. Eur J Appl Physiol. 2010;109(4):659–67.

    Article  CAS  PubMed  Google Scholar 

  295. Shaharudin S, Ghosh AK, Ismail AA. Anaerobic capacity of physically active eumenorrheic females at mid-luteal and mid-follicular phases of ovarian cycle. J Sports Med Phys Fitness. 2011;51(4):576–82.

    CAS  PubMed  Google Scholar 

  296. Redman LM, Weatherby RP. Measuring performance during the menstrual cycle: a model using oral contraceptives. Med Sci Sports Exerc. 2004;36(1):130–6.

    Article  PubMed  Google Scholar 

  297. Giacomoni M, Bernard T, Gavarry O, et al. Influence of the menstrual cycle phase and menstrual symptoms on maximal anaerobic performance. Med Sci Sports Exerc. 2000;32(2):486–92.

    Article  CAS  PubMed  Google Scholar 

  298. Sunderland D, Tunaley V, Homer F, et al. Menstrual cycle and oral contraceptives’ effects on growth hormone response to sprinting. Appl Physiol Nutr Metab. 2011;36(4):495–502.

    Article  CAS  PubMed  Google Scholar 

  299. Lynch NJ, DeVito G, Nimmo MA. Low dosage monophasic oral contraceptive use and intermittent exercise performance and metabolism in humans. Eur J Appl Physiol. 2001;84:296–301.

    Article  CAS  PubMed  Google Scholar 

  300. Rebelo AC, Zuttin RS, Verlengia R, et al. Effect of low-dose combined oral contraceptive on aerobic capacity and anaerobic threshold level in active and sedentary young women. Contraception. 2010;81(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  301. Rougier G, Linquette Y. Menstruation and physical exercises. Presse Med. 1962;70:1921–3.

    CAS  PubMed  Google Scholar 

  302. Erdelyi GJ. Gynecological survey of female athletes. J Sports Med Phys Fitness. 1962;2:174–9.

    Google Scholar 

  303. Eston RG. The regular menstrual cycle and athletic performance. Sports Med. 1984;1(6):431–45.

    Article  CAS  PubMed  Google Scholar 

  304. Fraccaroli F. Sports performance of women during the menstrual cycle. Minerva Med. 1980;71(48):3557–66.

    CAS  PubMed  Google Scholar 

  305. Wilson CA, Abdenour TE, Keye WR. Menstrual disorders among intercollegiate athletes and non athletes. Perceived impact on performance. Athl Train J NATA. 1991;26:170–7.

    Google Scholar 

  306. Kishali NF, Imamoglu O, Katkat D, et al. Effects of menstrual cycle on sports performance. Int J Neurosci. 2006;116:1549–63.

    Article  PubMed  Google Scholar 

  307. Brooks-Gunn J, Gargiulo JM, Warren MP. The effect of cycle phase on the performance of adolescent swimmers. Phys Sportsmed. 1986;14:182–92.

    Article  CAS  PubMed  Google Scholar 

  308. Fomin SK, Pivovarova VI, Voronova VI. Changes in the special working capacity and mental stability of well-trained woman skiers at various phases of the biological cycle. Sports Train Med Rehab. 1989;1:89–92.

    Article  Google Scholar 

  309. Oosthuyse T, Bosch AN, Jackson S. Cycling time trial performance during different phases of the menstrual cycle. Eur J Appl Physiol. 2005;94(3):268–76.

    Article  PubMed  Google Scholar 

  310. Vaiksaar S, Jürimäe J, Mäestu J, et al. No effect of menstrual cycle phase on fuel oxidation during exercise in rowers. Eur J Appl Physiol. 2011;111(6):1027–34.

    Article  PubMed  Google Scholar 

  311. Vaiksaar S, Jürimäe J, Mäestu J, et al. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J Strength Cond Res. 2011;25(6):1571–8.

    Article  PubMed  Google Scholar 

  312. Burkman RT Jr. Noncontraceptive effects of hormonal contraceptives: bone mass, sexually transmitted disease and pelvic inflammatory disease, cardiovascular disease, menstrual function, and future fertility. Am J Obstet Gynecol. 1994;170(5 Pt 2):1569–75.

    Article  PubMed  Google Scholar 

  313. Möller-Nielsen J, Hammar M. Women’s soccer injuries in relation to the menstrual cycle and oral contraceptive use. Med Sci Sports Exerc. 1989;21(2):126–9.

    PubMed  Google Scholar 

  314. Möller-Nielsen J, Hammar M. Sports injuries and oral contraceptive use. Is there a relationship? Sports Med. 1991;12(3):152–60.

    Article  PubMed  Google Scholar 

  315. Sulak PJ, Cressman BE, Waldrop E, et al. Extending the duration of active oral contraceptive pills to manage hormone withdrawal symptoms. Obstet Gynecol. 1997;89(2):19–183; review.

    Article  Google Scholar 

  316. Wright KP, Johnson JV. Evaluation of extended and continuous use oral contraceptives. Ther Clin Risk Manag. 2008;4(5):905–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Shrader SP, Dickerson LM. Extended- and continuous-cycle oral contraceptives. Pharmacotherapy. 2008;28(8):1033–40.

    Article  CAS  PubMed  Google Scholar 

  318. Vaiksaar S, Jürimäe J, Mäestu J, et al. Phase of oral contraceptive cycle and endurance capacity of rowers. Percept Mot Skills. 2011;113(3):764–72.

    Article  PubMed  Google Scholar 

  319. Rechichi C, Dawson V. Effect of oral contraceptive cycle phase on performance in team sport players. J Sci Med Sport. 2009;12(1):190–5.

    Article  PubMed  Google Scholar 

  320. Rechichi C, Dawson R. Oral contraceptive phase does not affect 200-m swim time trial performance. J Strength Cond Res. 2012;26(1):961–7.

    Article  PubMed  Google Scholar 

  321. Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50.

    Article  CAS  PubMed  Google Scholar 

  322. Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):1512–32.

    Article  PubMed  Google Scholar 

  323. Shultz SJ, Schmitz RJ, Nguyen AD, et al. ACL Research Retreat V: an update on ACL injury risk and prevention. March 25–27, 2010. Greensboro, NC. J Athl Train. 2010;45:499–508.

    Article  PubMed  PubMed Central  Google Scholar 

  324. Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42:394–412.

    Article  CAS  PubMed  Google Scholar 

  325. Chandrashekar N, Mansouri H, Slauterbeck J, et al. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech. 2006;39(16):2943–50.

    Article  PubMed  Google Scholar 

  326. Park SK, Stefanyshyn DJ, Ramage B, et al. Alterations in knee joint laxity during the menstrual cycle in healthy women leads to increases in joint loads during selected athletic movements. Am J Sports Med. 2009;37(6):1169–77.

    Article  PubMed  Google Scholar 

  327. Park SK, Stefanyshyn DJ, Ramage B, et al. Relationship between knee joint laxity and knee joint mechanics during the menstrual cycle. Br J Sports Med. 2009;43:174–9.

    Article  PubMed  Google Scholar 

  328. Liu S, Al-Shaikh R, Panossian V, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res. 1996;14:526–33.

    Article  CAS  PubMed  Google Scholar 

  329. Yu W, Liu S, Hatch J, et al. Effect of estrogen on cellular metabolism of the human anterior cruciate ligament. Clin Orthop. 1999;366:229–38.

    Article  Google Scholar 

  330. Yu W, Panossian V, Hatch J, et al. Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop. 2001;383:268–81.

    Article  Google Scholar 

  331. Dragoo JL, Lee RS, Benhaim P, et al. Relaxin receptors in the human female anterior cruciate ligament. Am J Sports Med. 2003;31:577–84.

    Article  PubMed  Google Scholar 

  332. Faryniarz DA, Bhargave AM, Lajam C, et al. Quantitation of estrogen receptors and relaxin binding in human anterior cruciate ligament fibroblasts. In Vitro Cell Dev Biol Anim. 2006;42:176–81.

    Article  CAS  PubMed  Google Scholar 

  333. Dragoo JL, Castillo TN, Braun HJ, et al. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med. 2011;39(10):2175–80.

    Article  PubMed  Google Scholar 

  334. Slauterbeck J, Clevenger C, Lundberg W, et al. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J Orthop Res. 1999;17:405–8.

    Article  CAS  PubMed  Google Scholar 

  335. Slauterbeck JR, Fuzie SF, Smith MP, et al. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train. 2002;37:275–8.

    PubMed  PubMed Central  Google Scholar 

  336. Deie M, Sakamaki Y, Sumen Y, et al. Anterior knee laxity in young women varies with their menstrual cycle. Int Orthop. 2002;26:154–6.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Hertel J, Williams NI, Olmsted-Kramer LC, et al. Neuromuscular performance and knee laxity do not change across the menstrual cycle in female athletes. Knee Surg Sports Traumatol Arthrosc. 2006;14:817–22.

    Article  PubMed  Google Scholar 

  338. Zazulak BT, Paterno M, Myer GD, et al. The effects of the menstrual cycle on anterior knee laxity: a systematic review. Sports Med. 2006;36(10):847–62.

    Article  PubMed  Google Scholar 

  339. Heitz N, Eisenhower P, Beck C, et al. Hormonal changes throughout the menstrual cycle and increased ACL laxity in females. J Athl Train. 1999;34:144–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Romani W, Patrie J, Curl LA, et al. The correlations between estradiol, estrone, estriol, progesterone, and sex hormone-binding globulin and anterior cruciate ligament stiffness in healthy, active females. J Womens Health (Larchmt). 2003;12(3):287–98.

    Article  Google Scholar 

  341. Karageanes SJ, Blackburn K, Vangelos ZA. The association of the menstrual cycle with the laxity of the anterior cruciate ligament in adolescent female athletes. Clin J Sport Med. 2000;10:162–8.

    Article  CAS  PubMed  Google Scholar 

  342. Wojtys EM, Huston LJ, Lindenfeld TN, et al. Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. Am J Sports Med. 1998;26:614–9.

    Article  CAS  PubMed  Google Scholar 

  343. McShane JM, Balsbaugh T, Simpson Z, et al. Letters to the editor. Am J Sports Med. 2000;28(1):131.

    Article  CAS  PubMed  Google Scholar 

  344. Wojtys EM, Huston LJ, Boynton MD, et al. The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. Am J Sports Med. 2002;30(2):182–8.

    Article  PubMed  Google Scholar 

  345. Myklebust G, Maehlum S, Holm I, et al. A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand J Med Sci Sports. 1998;8:149–53.

    Article  CAS  PubMed  Google Scholar 

  346. Myklebust G, Engebretsen L, Braekken IH, et al. Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med. 2003;13:71–8.

    Article  PubMed  Google Scholar 

  347. Arendt EA, Agel J, Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34(2):86–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Arendt EA, Bershadsky B, Agel J. Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J Gend Specif Med. 2002;5:19–26.

    PubMed  Google Scholar 

  349. Adachi N, Nawata K, Maeta M, et al. Relationship of the menstrual cycle phase to anterior cruciate ligament injuries in teenaged female athletes. Arch Orthop Trauma Surg. 2008;128:473–8.

    Article  PubMed  Google Scholar 

  350. Beynnon BD, Johnson RJ, Braun S, et al. The relationship between menstrual cycle phase and anterior cruciate ligament injury: a case–control study of recreational alpine skiers. Am J Sports Med. 2006;34(5):757–64.

    Article  PubMed  Google Scholar 

  351. Ruedl G, Pooner P, Linortner I, et al. Are oral contraceptive use and menstrual cycle phase related to anterior cruciate ligament injury risk in female recreational skiers? Knee Surg Sports Traumatol Arthrosc. 2009;17:1065–9.

    Article  PubMed  Google Scholar 

  352. Fischer GM. Comparison of collagen dynamics in different tissues under influence of estradiol. Endocrinology. 1973;93:1216–8.

    Article  CAS  PubMed  Google Scholar 

  353. Eiling E, Bryant AL, Petersen A, et al. Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc. 2007;15:126–32.

    Article  CAS  PubMed  Google Scholar 

  354. Park SK, Stefanyshyn DJ, Loitz-Ramage B, et al. Changing hormone levels during the menstrual cycle affect knee laxity and stiffness in healthy female subjects. Am J Sports Med. 2009;37(3):588–98.

    Article  PubMed  Google Scholar 

  355. Burgess KE, Pearson SJ, Onambélé GL. Menstrual cycle variations in oestradiol and progesterone have no impact on in vivo medial gastrocnemius tendon mechanical properties. Clin Biomech. 2009;24:504–9.

    Article  CAS  Google Scholar 

  356. Burgess KE, Pearson SJ, Onambélé G. Patellar tendon properties with fluctuating menstrual cycle hormones. J Strength Cond Res. 2010;24(8):2088–95.

    Article  PubMed  Google Scholar 

  357. Bryant AL, Clark RA, Bartold S, et al. Effects of estrogen on the mechanical behavior of the human Achilles tendon in vivo. J Appl Physiol. 2008;105:1035–43.

    Article  PubMed  Google Scholar 

  358. Kubo K, Miyamoto M, Tanaka S, et al. Muscle and tendon properties during menstrual cycle. Int J Sports Med. 2009;30(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  359. Shultz SJ, Schmitz RJ, Nguyen A-D, et al. Knee joint laxity and its cyclic variation influence tibiofemoral motions during weight acceptance. Med Sci Sports Exerc. 2011;43(2):287–95.

    Article  PubMed  PubMed Central  Google Scholar 

  360. Bell DR, Myrick MP, Blackburn JT, et al. The effect of menstrual-cycle phase on hamstring extensibility and muscle stiffness. J Sport Rehabil. 2009;18(4):553–63.

    Article  PubMed  Google Scholar 

  361. Bell DR, Blackburn JT, Ondrak KS, et al. The effects of oral contraceptive use on muscle stiffness across the menstrual cycle. Clin J Sport Med. 2011;21(6):467–73.

    Article  PubMed  Google Scholar 

  362. Bell DR, Blackburn JT, Norcorss MF, et al. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):361–7.

    Article  PubMed  Google Scholar 

  363. Huston LJ, Wojtys EM. Neuromuscular performance characteristics in elite female athletes. Am J Sports Med. 1996;24:427–36.

    Article  CAS  PubMed  Google Scholar 

  364. Abt JP, Sell TC, Laudner KG, et al. Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle. Knee Surg Sports Traumatol Arthrosc. 2007;15:901–7.

    Article  PubMed  Google Scholar 

  365. Fridén C, Ramsey DK, Backstrom T, et al. Altered postural control during the luteal phase in women with premenstrual symptoms. Neuroendocrinology. 2005;81:150–7.

    Article  PubMed  CAS  Google Scholar 

  366. Fridén C, Hirschberg AL, Saartok T, et al. Knee joint kinaesthesia and neuromuscular coordination during three phases of the menstrual cycle in moderately active women. Knee Surg Sports Traumatol Arthrosc. 2006;14:383–9.

    Article  PubMed  Google Scholar 

  367. Fu Q, Okazaki K, Shibata S, et al. Menstrual cycle effects on sympathetic neural responses to upright tilt. J Physiol Lond. 2009;587:2019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Swanik CB, Lephart SM, Swanik KA, et al. Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop Relat Res. 2004;425:189–99.

    Article  Google Scholar 

  369. Dedrick GS, Sizer PS, Merkle JN, et al. Effect of sex hormones on neuromuscular control patterns during landing. J Electromyogr Kinesiol. 2008;18:68–78.

    Article  PubMed  Google Scholar 

  370. Fouladi R, Rahabi R, Naseri N, et al. Menstrual cycle and knee joint position sense in healthy female athletes. Knee Surg Sports Traumatol Arthrosc. 2012;20(8):1647–52.

    Article  PubMed  Google Scholar 

  371. Chaudhari AM, Lindenfeld TN, Andriacchi TP, et al. Knee and hip loading patterns at different phases in the menstrual cycle: implications for the gender difference in anterior cruciate ligament injury rates. Am J Sports Med. 2007;35(5):793–800.

    Article  PubMed  Google Scholar 

  372. Shultz SJ, Schmitz RJ, Kong Y, et al. Cyclic variations in multiplanar knee laxity influence landing biomechanics. Med Sci Sports Exerc. 2012;44(5):900–9.

    Article  PubMed  Google Scholar 

  373. Hlavacova N, Wawruch M, Tisonova J, et al. Neuroendocrine activation during combined mental and physical stress in women depends on trait anxiety and the phase of the menstrual cycle. Ann N Y Acad Sci. 2008;1158:520–5.

    Article  Google Scholar 

  374. Hoffman M, Harter RA, Hayes BT, et al. The interrelationships among sex hormone concentrations, motoneuron excitability, and anterior tibial displacement in women and men. J Athl Train. 2008;43(4):364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  375. Clark RA, Simon B, Bryant AL. Tibial acceleration variability during consecutive gait cycles is influenced by the menstrual cycle. Clin Biomech. 2010;25:557–62.

    Article  Google Scholar 

  376. Myer GD, Ford KR, Brent JL, et al. An integrated approach to change the outcome part I: neuromuscular screening methods to identify high ACL injury risk athletes. J Strength Cond Res. 2012;26(8):2265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Hicks-Little CA, Thatcher JR, Hauth JM, et al. Menstrual cycle stage and oral contraceptive effects on anterior tibial displacement in collegiate female athletes. J Sports Med Phys Fitness. 2007;47(2):255–60.

    CAS  PubMed  Google Scholar 

  378. Hansen M, Miller BF, Holm L, et al. Effect of administration of oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young women. J Appl Physiol. 2009;106:1435–43.

    Article  CAS  PubMed  Google Scholar 

  379. Agel J, Bershadsky B, Arendt EA. Hormonal therapy: ACL and ankle injury. Med Sci Sports Exerc. 2006;38(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  380. Cammarata ML, Dhaher YY. The differential effects of gender, anthropometry, and prior hormonal state on frontal plane knee joint stiffness. Clin Biomech (Bristol, Avon). 2008;23(7):937–45.

    Article  PubMed  Google Scholar 

  381. Vescovi JD. The menstrual cycle and anterior cruciate ligament injury risk: implications of menstrual cycle variability. Sports Med. 2011;41(2):91–101.

    Article  PubMed  Google Scholar 

  382. Shultz SJ, Kirk SE, Johnson ML, et al. Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sports Exerc. 2004;36:1165–74.

    Article  CAS  PubMed  Google Scholar 

  383. Hewett TE. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Sports Med. 2000;29(5):313–27.

    Article  CAS  PubMed  Google Scholar 

  384. Shultz SJ, Sander TC, Kirk SE, et al. Sex differences in knee joint laxity change across the female menstrual cycle. J Sports Med Phys Fitness. 2005;45(4):594–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  385. Hewett TE, Zazulak BT, Myer GD. Effects of the menstrual cycle on anterior cruciate ligament injury risk—a systematic review. Am J Sports Med. 2007;35:659–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constance M. Lebrun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebrun, C.M., Joyce, S.M., Constantini, N.W. (2020). Effects of Female Reproductive Hormones on Sports Performance. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics