Skip to main content

Advancing Imaging of the Hip: Cartilage

  • Chapter
  • First Online:
Hip Dysplasia
  • 876 Accesses

Abstract

Developmental dysplasia of the hip is a common risk factor of early osteoarthritis (OA). Current classical non-invasive magnetic resonance imaging (MRI) methods can be used to identify qualitative, macroscopic alterations of cartilage related to gross thickness and integrity. However, these structural changes in the cartilage often manifest late in the OA progression. In the early stage of OA, changes of the biochemical composition occur in the extracellular matrix of the cartilage. This chapter discusses quantitative MRI techniques that are sensitive to these early biochemical changes in the cartilage tissue that can be used to evaluate the hip cartilage. The concepts of the most common methods for biochemical assessment of the hip cartilage (dGEMRIC, T2, T2∗ and T1ρ mapping) are introduced and their application in the context of hip dysplasia is discussed. The necessary infrastructure for setup, conduction, and evaluation of biochemical sensitive hip cartilage MR imaging is outlined. The data post-processing steps are presented, showing the necessary steps involved to generate, analyze, and interpret the quantitative cartilage maps. The quantitative MRI cartilage mapping methods discussed are promising tools for clinical researchers to examine structural and biochemical changes in the cartilage that occur in hip dysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop Rel Res. 1986;213:20–33.

    Google Scholar 

  2. Hipp JA, Sugano N, Millis MB, Murphy SB. Planning acetabular redirection osteotomies based on joint contact pressures. Clin Orthop Rel Res. 1999;364:134–43.

    Article  Google Scholar 

  3. Lane NE, Lin P, Christiansen L, Gore LR, Williams EN, Hochberg MC, et al. Association of mild acetabular dysplasia with an increased risk of incident hip osteoarthritis in elderly white women: the study of osteoporotic fractures. Arthritis Rheum. 2000;43(2):400–4.

    Article  CAS  PubMed  Google Scholar 

  4. Anwar MM, Sugano N, Matsui M, Takaoka K, Ono K. Dome osteotomy of the pelvis for osteoarthritis secondary to hip dysplasia. An over five-year follow-up study. J Bone Joint Surg Br. 1993;75(2):222–7.

    Article  CAS  PubMed  Google Scholar 

  5. Nishii T, Shiomi T, Tanaka H, Yamazaki Y, Murase K, Sugano N. Loaded cartilage T2 mapping in patients with hip dysplasia. Radiology. 2010;256(3):955–65.

    Article  PubMed  Google Scholar 

  6. Kim Y-J, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85-A(10):1987–92.

    Article  Google Scholar 

  7. Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim Y-J. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am. 2006;88(7):1540–8.

    Article  PubMed  Google Scholar 

  8. Rakhra KS, Lattanzio P-J, Cárdenas-Blanco A, Cameron IG, Beaulé PE. Can T1-rho MRI detect acetabular cartilage degeneration in femoroacetabular impingement?: a pilot study. J Bone Joint Surg Br. 2012;94(9):1187–92.

    Article  CAS  PubMed  Google Scholar 

  9. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg. 1995;53(10):1182–92.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging. 2013;38(5):991–1008.

    Article  PubMed  Google Scholar 

  11. Matzat SJ, van Tiel J, Gold GE, Oei EHG. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg. 2013;3(3):162–74.

    PubMed  PubMed Central  Google Scholar 

  12. Riley GM, McWalter EJ, Stevens KJ, Safran MR, Lattanzi R, Gold GE. Magnetic resonance imaging of the hip for the evaluation of femoroacetabular impingement; past, present, and future. J Magn Reson Imaging. 2015;41(3):558–72.

    Article  PubMed  Google Scholar 

  13. Akella SVS, Reddy Regatte R, Gougoutas AJ, Borthakur A, Shapiro EM, Kneeland JB, et al. Proteoglycan-induced changes in T1ρ-relaxation of articular cartilage at 4 T. Magn Reson Med. 2001;46(3):419–23.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Cheng J, Lin K, Saadat E, Bolbos RI, Jobke B, et al. Quantitative MRI using T1ρ and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor C, Carballido-Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC, and contrast-enhanced CT. Magn Reson Imaging. 2009;27(6):779–84.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gray ML, Burstein D, Kim Y-J, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res. 2008;26(3):281–91.

    Article  CAS  PubMed  Google Scholar 

  17. Binks DA, Hodgson RJ, Ries ME, Foster RJ, Smye SW, McGonagle D, et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol. 2013;86(1023). https://doi.org/10.1259/bjr.20120163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi JA, Gold G. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am. 2011;19(2):249–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gold GE, Cicuttini F, Crema MD, Eckstein F, Guermazi A, Kijowski R, et al. OARSI clinical trials recommendations: hip imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage. 2015;23(5):716–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Subburaj K, Valentinitsch A, Dillon AB, Joseph GB, Li X, Link TM, et al. Regional variations in MR relaxation of hip joint cartilage in subjects with and without femoralacetabular impingement. Magn Reson Imaging. 2013;31(7):1129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lazik A, Theysohn JM, Geis C, Johst S, Ladd ME, Quick HH, et al. 7 Tesla quantitative hip MRI: T1, T2 and T2∗ mapping of hip cartilage in healthy volunteers. Eur Radiol. 2016;26(5):1245–53.

    Article  PubMed  Google Scholar 

  22. Bittersohl B, Hosalkar HS, Hesper T, Tiderius CJ, Zilkens C, Krauspe R. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects. Front Surg. 2015;2:34.

    Google Scholar 

  23. Nemeth A, Marco L, Boutitie F, Sdika M, Grenier D, Rabilloud M, et al. Reproducibility of in vivo magnetic resonance imaging T1rho and T2 relaxation time measurements of hip cartilage at 3.0 T in healthy volunteers. J Magn Reson Imaging. 2018;47(4):1022–33.

    Article  PubMed  Google Scholar 

  24. Anwander H, Rakhra KS, Melkus G, Beaulé PE. T1ρ hip cartilage mapping in assessing patients with cam morphology: how can we optimize the regions of interest? Clin Orthop Relat Res. 2017;475(4):1066–75.

    Article  Google Scholar 

  25. Pedoia V, Gallo MC, Souza RB, Majumdar S. Longitudinal study using voxel-based relaxometry: association between cartilage T1ρ and T2 and patient reported outcome changes in hip osteoarthritis. J Magn Reson Imaging. 2017;45(5):1523–33.

    Article  PubMed  Google Scholar 

  26. Surowiec RK, Lucas EP, Wilson KJ, Saroki AJ, Ho CP. Clinically relevant subregions of articular cartilage of the hip for analysis and reporting quantitative magnetic resonance imaging. Cartilage. 2014;5(1):11–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rakhra KS, Cárdenas-Blanco A, Melkus G, Schweitzer ME, Cameron IG, Beaulé PE. Is the T1ρ MRI profile of hyaline cartilage in the normal hip uniform? Clin Orthop Relat Res. 2015;473(4):1325–32.

    Article  Google Scholar 

  28. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  29. Bittersohl B, Hosalkar HS, Kim Y-J, Werlen S, Trattnig S, Siebenrock KA, et al. T1 assessment of hip joint cartilage following intra-articular gadolinium injection: a pilot study. Magn Reson Med. 2010;64(4):1200–7.

    Article  PubMed  Google Scholar 

  30. Zilkens C, Tiderius CJ, Krauspe R, Bittersohl B. Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases. Skeletal Radiol. 2015;44(8):1073–83.

    Article  PubMed  Google Scholar 

  31. Hingsammer A, Chan J, Kalish LA, Mamisch TC, Kim Y-J. Is the damage of cartilage a global or localized phenomenon in hip dysplasia, measured by dGEMRIC? Clin Orthop Relat Res. 2013;471(1):301–7.

    Article  Google Scholar 

  32. Jessel RH, Zurakowski D, Zilkens C, Burstein D, Gray ML, Kim Y-J. Radiographic and patient factors associated with pre-radiographic osteoarthritis in hip dysplasia. J Bone Joint Surg Am. 2009;91(5):1120–9.

    Article  PubMed  Google Scholar 

  33. Xu L, Su Y, Kienle K-P, Hayashi D, Guermazi A, Zhang J, et al. Evaluation of radial distribution of cartilage degeneration and necessity of pre-contrast measurements using radial dGEMRIC in adults with acetabular dysplasia. BMC Musculoskelet Disord. 2012;13:212.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gold SL, Burge AJ, Potter HG. MRI of hip cartilage: joint morphology, structure, and composition. Clin Orthop Relat Res. 2012;470(12):3321–31.

    Article  Google Scholar 

  35. Watanabe A, Boesch C, Siebenrock K, Obata T, Anderson SE. T2 mapping of hip articular cartilage in healthy volunteers at 3T: a study of topographic variation. J Magn Reson Imaging. 2007;26(1):165–71.

    Article  PubMed  Google Scholar 

  36. Lüsse S, Claassen H, Gehrke T, Hassenpflug J, Schünke M, Heller M, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging. 2000;18(4):423–30.

    Article  PubMed  Google Scholar 

  37. Nieminen MT, Töyräs J, Rieppo J, Hakumäki JM, Silvennoinen J, Helminen HJ, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med. 2000;43(5):676–81.

    Article  CAS  PubMed  Google Scholar 

  38. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol. 2001;177(3):665–9.

    Article  CAS  PubMed  Google Scholar 

  39. Nishii T, Tanaka H, Sugano N, Sakai T, Hananouchi T, Yoshikawa H. Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia. Osteoarthritis Cartilage. 2008;16(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  40. Shoji T, Yamasaki T, Izumi S, Sawa M, Akiyama Y, Yasunaga Y, et al. Evaluation of articular cartilage following rotational acetabular osteotomy for hip dysplasia using T2 mapping MRI. Skeletal Radiol. 2018;47(11):1467–74.

    Article  PubMed  Google Scholar 

  41. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2∗-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–49.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bittersohl B, Hosalkar HS, Hughes T, Kim Y-J, Werlen S, Siebenrock KA, et al. Feasibility of T2∗ mapping for the evaluation of hip joint cartilage at 1.5 T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med. 2009;62(4):896–901.

    Article  PubMed  Google Scholar 

  43. Bittersohl B, Miese FR, Hosalkar HS, Mamisch TC, Antoch G, Krauspe R, et al. T2∗ mapping of acetabular and femoral hip joint cartilage at 3T: a prospective controlled study. Investig Radiol. 2012;47(7):392–7.

    Article  CAS  Google Scholar 

  44. Miese FR, Zilkens C, Holstein A, Bittersohl B, Kröpil P, Mamisch TC, et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2∗ mapping. Acta Radiol. 2011;52(1):106–10.

    Article  PubMed  Google Scholar 

  45. Hesper T, Schleich C, Buchwald A, Hosalkar HS, Antoch G, Krauspe R, et al. T2* Mapping of the Hip in Asymptomatic Volunteers with Normal Cartilage Morphology: An Analysis of Regional and Age- Dependent Distribution. Cartilage. 2018;9(1):30–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wáng Y-XJ, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg. 2015;5(6):858–85.

    PubMed  PubMed Central  Google Scholar 

  47. Carballido-Gamio J, Link TM, Li X, Han ET, Krug R, Ries MD, et al. Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008;28(1):227–35.

    Article  PubMed  Google Scholar 

  48. Wyatt C, Kumar D, Subburaj K, Lee S, Nardo L, Narayanan D, et al. Cartilage T1ρ and T2 relaxation times in patients with mild-to-moderate radiographic hip osteoarthritis. Arthritis Rheumatol. 2015;67(6):1548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li X, Pedoia V, Kumar D, Rivoire J, Wyatt C, Lansdown D, et al. Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. Osteoarthritis Cartilage. 2015;23(12):2214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McGuffin WS, Melkus G, Rakhra KS, Beaulé PE. Is the contralateral hip at risk in patients with unilateral symptomatic cam femoroacetabular impingement? A quantitative T1ρ MRI study. Osteoarthritis Cartilage. 2015;23(8):1337–42.

    Article  CAS  PubMed  Google Scholar 

  51. Beaulé PE, Speirs AD, Anwander H, Melkus G, Rakhra K, Frei H, et al. Surgical correction of cam deformity in association with femoroacetabular impingement and its impact on the degenerative process within the hip joint. J Bone Joint Surg Am. 2017;99(16):1373–81.

    Article  PubMed  Google Scholar 

  52. Samaan MA, Zhang AL, Gallo MC, Schwaiger BJ, Link TM, Souza RB, et al. Quantitative magnetic resonance arthrography in patients with femoroacetabular impingement. J Magn Reson Imaging. 2016;44(6):1539–45.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Melkus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melkus, G., Rakhra, K.S. (2020). Advancing Imaging of the Hip: Cartilage. In: Beaulé, P. (eds) Hip Dysplasia. Springer, Cham. https://doi.org/10.1007/978-3-030-33358-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33358-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33357-7

  • Online ISBN: 978-3-030-33358-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics