Skip to main content

Trabectedin, a Drug Acting on Both Cancer Cells and the Tumor Microenvironment

  • Chapter
  • First Online:
Approaching Complex Diseases

Part of the book series: Human Perspectives in Health Sciences and Technology ((HPHST,volume 2))

  • 670 Accesses

Abstract

In the last decades the cancer cell-centric paradigm has changed to consider the tumor micro-environment (TME) as a whole. Immune cells present in the TME establish a complex relationship with cancer cells and may strongly influence disease progression. However, myeloid cells infiltrating tumor tissues promote, rather than stop, cancer progression. Tumor-Associated Macrophages (TAMs) are abundantly present at the TME and here they trigger and perpetrate a state of chronic inflammation which ultimately supports cancer proliferation and distant spreading, as well as contributes to an immune-suppressive milieu. Active research frontlines of the last years have provided novel therapeutic strategies aimed at depleting TAMs and/or modulating their pro-tumor effects. Some experimental approaches have indeed been successful in pre-clinical tumor models and have now entered early clinical trials, with encouraging results. Nevertheless, targeting only the tumor-promoting macrophages may not be sufficient to definitely eradicate cancer. The finding that the anti-tumor agent trabectedin has wider mechanisms of action than previously perceived, opened novel interesting viewpoints. Trabectedin presents the unique feature of being able to simultaneously kill cancer cells and to affect several features of the inflammatory TME, most notably inducing the rapid and selective apoptosis of monocytes and macrophages. Anti-tumor drugs acting not only on tumor cells but also able to modify the whole TME deserve particular interest in the oncology field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allavena, P., and A. Mantovani. 2012. Immunology in the clinic review series; Focus on cancer: Tumour-associated macrophages: Undisputed stars of the inflammatory tumour microenvironment. Clinical and Experimental Immunology 167: 195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allavena, P., M. Signorelli, M. Chieppa, E. Erba, G. Bianchi, F. Marchesi, C.O. Olimpio, C. Bonardi, A. Garbi, A. Lissoni, F. de Braud, J. Jimeno, and M. D’Incalci. 2005. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): Inhibition of macrophage differentiation and cytokine production. Cancer Research 65: 2964–2971.

    Article  CAS  PubMed  Google Scholar 

  3. Andreeva-Gateva, P., and S. Chakar. 2019. The place of trabectedin in the treatment of soft tissue sarcoma: An umbrella review of the level one evidence. Expert Opinion on Orphan Drugs 7: 105–115.

    Article  CAS  Google Scholar 

  4. Balkwill, F., K.A. Charles, and A. Mantovani. 2005. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217.

    Article  CAS  PubMed  Google Scholar 

  5. Beatty, G.L., D.A. Torigian, E.G. Chiorean, B. Saboury, A. Brothers, A. Alavi, A.B. Troxel, W. Sun, U.R. Teitelbaum, R.H. Vonderheide, and P.J. O’Dwyer. 2013. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clinical Cancer Research 19: 6286–6295.

    Article  CAS  PubMed  Google Scholar 

  6. Belgiovine, C., E. Bello, M. Liguori, I. Craparotta, L. Mannarino, L. Paracchini, L. Beltrame, S. Marchini, C.M. Galmarini, A. Mantovani, R. Frapolli, P. Allavena, and M. D’Incalci. 2017. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. British Journal of Cancer 117: 628–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belgiovine, C., M. D’Incalci, P. Allavena, and R. Frapolli. 2016. Tumor-associated macrophages and anti-tumor therapies: Complex links. Cellular and Molecular Life Sciences 73: 2411–2424.

    Article  CAS  PubMed  Google Scholar 

  8. Biswas, S.K., P. Allavena, and A. Mantovani. 2013. Tumor-associated macrophages: Functional diversity, clinical significance, and open questions. Seminars in Immunopathology 35: 585–600.

    Article  CAS  PubMed  Google Scholar 

  9. Borgoni, S., A. Iannello, S. Cutrupi, P. Allavena, M. D’Incalci, F. Novelli, and P. Cappello. 2017. Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Oncoimmunology 7: e1393596.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cabrales, P. 2019. RRx-001 acts as a dual small molecule checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP-α on monocytes/macrophages. Translational Oncology 12: 626–632.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carminati, L., D. Pinessi, P. Borsotti, L. Minoli, R. Giavazzi, M. D’Incalci, D. Belotti, and G. Taraboletti. 2019. Antimetastatic and antiangiogenic activity of trabectedin in cutaneous melanoma. Carcinogenesis 40: 303–312.

    Article  CAS  PubMed  Google Scholar 

  12. Cassetta, L., and J.W. Pollard. 2018. Targeting macrophages: Therapeutic approaches in cancer. Nature Reviews. Drug Discovery 17 (12): 887–904.

    Article  CAS  PubMed  Google Scholar 

  13. Charytonowicz, E., M. Terry, K. Coakley, L. Telis, F. Remotti, C. Cordon-Cardo, R.N. Taub, and I. Matushansky. 2012. PPARγ agonists enhance ET-743–induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma. Journal of Clinical Investigation 122: 886–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colombo, N., A.-C. Hardy-Bessard, G. Ferrandina, C. Marth, and I. Romero. 2016. Experience with trabectedin + pegylated liposomal doxorubicin for recurrent platinum-sensitive ovarian cancer unsuited to platinum rechallenge. Expert Review of Anticancer Therapy 16: 11–19.

    Article  CAS  PubMed  Google Scholar 

  15. Cruz, C., A. Llop-Guevara, J.E. Garber, B.K. Arun, J.A. Pérez Fidalgo, A. Lluch, M.L. Telli, C. Fernández, C. Kahatt, C.M. Galmarini, A. Soto-Matos, V. Alfaro, A. Pérez de la Haza, S.M. Domchek, S. Antolin, L. Vahdat, N.M. Tung, R. Lopez, J. Arribas, A. Vivancos, J. Baselga, V. Serra, J. Balmaña, and S.J. Isakoff. 2018. Multicenter phase II study of Lurbinectedin in BRCA-mutated and unselected metastatic advanced breast cancer and biomarker assessment substudy. Journal of Clinical Oncology 36: 3134–3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cucè, M., M.E. Gallo Cantafio, M.A. Siciliano, C. Riillo, D. Caracciolo, F. Scionti, N. Staropoli, V. Zuccalà, L. Maltese, A. Di Vito, K. Grillone, V. Barbieri, M. Arbitrio, M.T. Di Martino, M. Rossi, N. Amodio, P. Tagliaferri, P. Tassone, and C. Botta. 2019. Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma. Journal of Hematology & Oncology 12: 32.

    Article  Google Scholar 

  17. D’Incalci, M., N. Badri, C.M. Galmarini, and P. Allavena. 2014. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. British Journal of Cancer 111: 646–650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. D’Incalci, M. 2013. Trabectedin mechanism of action: What’s new? Future Oncology 9: 5–10.

    Article  PubMed  CAS  Google Scholar 

  19. DeNardo, D.G., and B. Ruffell. 2019. Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews. Immunology 19 (6): 369–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Denton, N.L., C.-Y. Chen, B. Hutzen, M.A. Currier, T. Scott, B. Nartker, J.L. Leddon, P.-Y. Wang, R. Srinivas, K.A. Cassady, W.F. Goins, and T.P. Cripe. 2018. Myelolytic treatments enhance oncolytic herpes virotherapy in models of Ewing sarcoma by modulating the immune microenvironment. Molecular Therapy Oncolytics 11: 62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Giandomenico, S., R. Frapolli, E. Bello, S. Uboldi, S.A. Licandro, S. Marchini, L. Beltrame, S. Brich, V. Mauro, E. Tamborini, S. Pilotti, P.G. Casali, F. Grosso, R. Sanfilippo, A. Gronchi, R. Mantovani, R. Gatta, C.M. Galmarini, J.M.F. Sousa-Faro, and M. D’Incalci. 2013. Mode of action of trabectedin in myxoid liposarcomas. Oncogene 33: 5201–5210.

    Article  PubMed  CAS  Google Scholar 

  22. Dossi, R., R. Frapolli, S. Di Giandomenico, L. Paracchini, F. Bozzi, S. Brich, V. Castiglioni, P. Borsotti, D. Belotti, S. Uboldi, R. Sanfilippo, E. Erba, R. Giavazzi, S. Marchini, S. Pilotti, M. D’Incalci, and G. Taraboletti. 2014. Antiangiogenic activity of trabectedin in myxoid liposarcoma: Involvement of host TIMP-1 and TIMP-2 and tumor thrombospondin-1. International Journal of Cancer 136 (3), 721–729.

    Google Scholar 

  23. Elez, M.E., J. Tabernero, D. Geary, T. Macarulla, S.P. Kang, C. Kahatt, A.S.M. Pita, C.F. Teruel, M. Siguero, M. Cullell-Young, S. Szyldergemajn, and M.J. Ratain. 2014. First-in-human phase I study of lurbinectedin (PM01183) in patients with advanced solid tumors. Clinical Cancer Research 20: 2205–2214.

    Article  CAS  PubMed  Google Scholar 

  24. Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature 420: 629–635.

    Article  CAS  PubMed  Google Scholar 

  25. Farago, A.F., B.J. Drapkin, J.A. Lopez-Vilarino de Ramos, C.M. Galmarini, R. Núñez, C. Kahatt, and L. Paz-Ares. 2019. ATLANTIS: A Phase III study of lurbinectedin/doxorubicin versus topotecan or cyclophosphamide/doxorubicin/vincristine in patients with small-cell lung cancer who have failed one prior platinum-containing line. Future Oncology 15: 231–239.

    Article  CAS  PubMed  Google Scholar 

  26. Forni, C., M. Minuzzo, E. Virdis, E. Tamborini, M. Simone, M. Tavecchio, E. Erba, F. Grosso, A. Gronchi, P. Aman, P. Casali, M. D’Incalci, S. Pilotti, and R. Mantovani. 2009. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Molecular Cancer Therapeutics 8: 449–457.

    Article  CAS  PubMed  Google Scholar 

  27. Germano, G., R. Frapolli, C. Belgiovine, A. Anselmo, S. Pesce, M. Liguori, E. Erba, S. Uboldi, M. Zucchetti, F. Pasqualini, M. Nebuloni, N. van Rooijen, R. Mortarini, L. Beltrame, S. Marchini, I. Fuso Nerini, R. Sanfilippo, P.G. Casali, S. Pilotti, C.M. Galmarini, A. Anichini, A. Mantovani, M. D’Incalci, and P. Allavena. 2013. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23: 249–262.

    Article  CAS  PubMed  Google Scholar 

  28. Germano, G., R. Frapolli, M. Simone, M. Tavecchio, E. Erba, S. Pesce, F. Pasqualini, F. Grosso, R. Sanfilippo, P.G. Casali, A. Gronchi, E. Virdis, E. Tarantino, S. Pilotti, A. Greco, M. Nebuloni, C.M. Galmarini, J.C. Tercero, A. Mantovani, M. D’Incalci, and P. Allavena. 2010. Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Research 70: 2235–2244.

    Article  CAS  PubMed  Google Scholar 

  29. Grignani, G., L. D’Ambrosio, Y. Pignochino, E. Palmerini, M. Zucchetti, P. Boccone, S. Aliberti, S. Stacchiotti, R. Bertulli, R. Piana, S. Miano, F. Tolomeo, G. Chiabotto, D. Sangiolo, A. Pisacane, A.P. Dei Tos, L. Novara, A. Bartolini, E. Marchesi, M. D’Incalci, A. Bardelli, P. Picci, S. Ferrari, and M. Aglietta. 2018. Trabectedin and olaparib in patients with advanced and non-resectable 17 bone and soft-tissue sarcomas (TOMAS): An open-label, phase 1b study from the Italian Sarcoma Group. The Lancet Oncology 19: 1360–1371.

    Article  CAS  PubMed  Google Scholar 

  30. Grosso, F., R.L. Jones, G.D. Demetri, I.R. Judson, J.-Y. Blay, A. Le Cesne, R. Sanfilippo, P. Casieri, P. Collini, P. Dileo, C. Spreafico, S. Stacchiotti, E. Tamborini, J.C. Tercero, J. Jimeno, M. D’Incalci, A. Gronchi, J.A. Fletcher, S. Pilotti, and P.G. Casali. 2007. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: A retrospective study. The Lancet Oncology 8: 595–602.

    Article  CAS  PubMed  Google Scholar 

  31. Hanahan, D., and R.A. Weinberg. 2011. Hallmarks of cancer: The next generation. Cell 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  32. Harlow, M.L., M.H. Chasse, E.A. Boguslawski, K.M. Sorensen, J.M. Gedminas, S.M. Kitchen-Goosen, S.B. Rothbart, C. Taslim, S.L. Lessnick, A.S. Peck, Z.B. Madaj, M.J. Bowman, and P.J. Grohar. 2019. Trabectedin inhibits EWS-FLI1 and evicts SWI/SNF from chromatin in a schedule-dependent manner. Clinical Cancer Research 25 (11): 3417–3429.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jones, J.D., B.P. Sinder, D. Paige, F.N. Soki, A.J. Koh, S. Thiele, Y. Shiozawa, L.C. Hofbauer, S. Daignault, H. Roca, and L.K. McCauley. 2019. Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis. Neoplasia 21: 172–184.

    Article  CAS  PubMed  Google Scholar 

  34. Liguori, M., C. Buracchi, F. Pasqualini, F. Bergomas, S. Pesce, M. Sironi, F. Grizzi, A. Mantovani, C. Belgiovine, and P. Allavena. 2016. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment. Oncotarget 7: 41662–41676.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Louneva, N., B. Saitta, D.J. Herrick, and S.A. Jimenez. 2003. Transcriptional inhibition of type I collagen gene expression in scleroderma fibroblasts by the antineoplastic drug Ecteinascidin 743. The Journal of Biological Chemistry 278: 40400–40407.

    Article  CAS  PubMed  Google Scholar 

  36. Mantovani, A., B. Bottazzi, F. Colotta, S. Sozzani, and L. Ruco. 1992. The origin and function of tumor-associated macrophages. Immunology Today 13: 265–270.

    Article  CAS  PubMed  Google Scholar 

  37. Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. 2017. Tumour-associated macrophages as treatment targets in oncology. Nature Reviews. Clinical Oncology 14: 399–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mantovani, A., B. Savino, M. Locati, L. Zammataro, P. Allavena, and R. Bonecchi. 2010. The chemokine system in cancer biology and therapy. Cytokine & Growth Factor Reviews 21: 27–39.

    Article  CAS  Google Scholar 

  39. Moneo, V., P. Martínez, B. de Castro, S. Cascajares, S. Avila, L.F. Garcia-Fernandez, and C.M. Galmarini. 2014. Abstract A174: Comparison of the antitumor activity of Trabectedin, Lurbinectedin, Zalypsis and PM00128 in a panel of human cells deficient in transcription/NER repair factors. Molecular Cancer Therapeutics 12: A174.

    Google Scholar 

  40. Murray, P.J. 2017. Macrophage polarization. Annual Review of Physiology 79: 541–566.

    Article  CAS  PubMed  Google Scholar 

  41. Noy, R., and J.W. Pollard. 2014. Tumor-associated macrophages: From mechanisms to therapy. Immunity 41: 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pernice, T., A.G. Bishop, M.J. Guillen, C. Cuevas, and P. Aviles. 2016. Development of a liquid chromatography/tandem mass spectrometry assay for the quantification of PM01183 (lurbinectedin), a novel antineoplastic agent, in mouse, rat, dog, cynomolgus monkey and mini-pig plasma. Journal of Pharmaceutical and Biomedical Analysis 123: 37–41.

    Article  CAS  PubMed  Google Scholar 

  43. Pyonteck, S.M., L. Akkari, A.J. Schuhmacher, R.L. Bowman, L. Sevenich, D.F. Quail, O.C. Olson, M.L. Quick, J.T. Huse, V. Teijeiro, M. Setty, C.S. Leslie, Y. Oei, A. Pedraza, J. Zhang, C.W. Brennan, J.C. Sutton, E.C. Holland, D. Daniel, and J.A. Joyce. 2013. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine 19: 1264–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ratti, C., L. Botti, V. Cancila, S. Galvan, I. Torselli, C. Garofalo, M.C. Manara, L. Bongiovanni, C.F. Valenti, A. Burocchi, M. Parenza, B. Cappetti, S. Sangaletti, C. Tripodo, K. Scotlandi, M.P. Colombo, and C. Chiodoni. 2017. Trabectedin overrides osteosarcoma differentiative block and reprograms the tumor immune environment enabling effective combination with immune checkpoint inhibitors. Clinical Cancer Research 23: 5149–5161.

    Article  CAS  PubMed  Google Scholar 

  45. Ries, C.H., M.A. Cannarile, S. Hoves, J. Benz, K. Wartha, V. Runza, F. Rey-Giraud, L.P. Pradel, F. Feuerhake, I. Klaman, T. Jones, U. Jucknischke, S. Scheiblich, K. Kaluza, I.H. Gorr, A. Walz, K. Abiraj, P.A. Cassier, A. Sica, C. Gomez-Roca, K.E. de Visser, A. Italiano, C. Le Tourneau, J.P. Delord, H. Levitsky, J.Y. Blay, and D. Ruttinger. 2014. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25: 846–859.

    Article  CAS  PubMed  Google Scholar 

  46. Ritter, B., and F.R. Greten. 2019. Modulating inflammation for cancer therapy. The Journal of Experimental Medicine 216 (6): 1234–1243. https://doi.org/10.1084/jem.20181739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Romano, M., R. Frapolli, M. Zangarini, E. Bello, L. Porcu, C.M. Galmarini, L.F. García-Fernández, C. Cuevas, P. Allavena, E. Erba, and M. D’Incalci. 2013. Comparison ofin vitroandin vivobiological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104). International Journal of Cancer 133: 2024–2033.

    Article  CAS  PubMed  Google Scholar 

  48. Santamaria Nunez, G., C.M. Robles, C. Giraudon, J.F. Martinez-Leal, E. Compe, F. Coin, P. Aviles, C.M. Galmarini, and J.M. Egly. 2016. Lurbinectedin specifically triggers the degradation of phosphorylated RNA Polymerase II and the formation of DNA breaks in cancer cells. Molecular Cancer Therapeutics 15: 2399–2412.

    Article  CAS  PubMed  Google Scholar 

  49. Vonderheide, R.H. 2018. The immune revolution: A case for priming, not checkpoint. Cancer Cell 33: 563–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Allavena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allavena, P., Liguori, M., Belgiovine, C. (2020). Trabectedin, a Drug Acting on Both Cancer Cells and the Tumor Microenvironment. In: Bizzarri, M. (eds) Approaching Complex Diseases. Human Perspectives in Health Sciences and Technology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-32857-3_13

Download citation

Publish with us

Policies and ethics