Skip to main content

Antioxidants Use and Sperm DNA Damage

  • Chapter
  • First Online:
Male Infertility

Abstract

Infertility is a common clinical condition known to induce significant psychological stress to the couple. Conventional semen analysis is commonly used for the initial evaluation of infertile men. However, this test cannot accurately detect sperm function, therefore, it cannot differentiate infertile from fertile men. Reactive oxygen species (ROS) are known to cause lipid peroxidation of the sperm plasma membrane, which in turn could lead to sperm DNA fragmentation (SDF). This shows the positive relationship between these two distinct entities. Therefore, it is necessary to detect their presence as this will determine one of the possible explanations of male infertility. Elevated SDF has been shown to negatively correlate with semen parameters and reproductive outcomes. Indications for its testing has been well studied by a panel composed of experts in this field. Although not recommended for routine use, it is still a valid test for male infertility assessment. Many surgical and nonsurgical treatment options have been offered to reduce the level of SDF. One of these is the use of antioxidants which are readily available compounds used in the treatment of male infertility. Several studies have demonstrated improved sperm kinetics with antioxidant therapy and subsequently improved reproductive outcomes. However, additional research is needed. Despite this limitation, antioxidant use is still a reasonable option for men suffering from infertility due to elevated SDF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zegers-Hochschild F, Adamson D, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care. Fertil Steril. 2017;108(3):393–406.

    Article  PubMed  Google Scholar 

  2. Tournaye H. Evidence-based management of male subfertility. Curr Opin Obstet Gynecol. 2006;18(3):253–9.

    Article  PubMed  Google Scholar 

  3. Attia AM, Al-Inany HG, Farquar C, Proctor M. Gonatrophins for idiopathic male factor subfertility. Cochrane Database Syst Rev. 2007;4 https://doi.org/10.1002/14651858.CD005071.pub3.

  4. Barratt CL. Semen analysis is the cornerstone of investigation for male infertility. Practitioner. 2007;251(1690):8–10.

    PubMed  Google Scholar 

  5. Patel A, Leong JY, Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: a systematic review. Arab J Urol. 2018;16:96–102.

    Article  PubMed  Google Scholar 

  6. Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  CAS  PubMed  Google Scholar 

  7. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003;42:318–43.

    Article  CAS  PubMed  Google Scholar 

  8. Leuchtenberger C, Schrader F, Weir DR, Gentile DP. The desoxyribosenucleic acid (DNA) content in spermatozoa of fertile and infertile human males. Chromosoma. 1953;6(1):61–78.

    Article  CAS  PubMed  Google Scholar 

  9. Aitken J, Koppers A. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011;13(1):36–42. https://doi.org/10.1038/aja.2010.68. Epub 2010 Aug 30.

    Article  CAS  PubMed  Google Scholar 

  10. Huang C, Cao X, Pang D, Li C, Luo Q, Zou Y, Feng B, et al. Is male infertility associated with increased oxidative stress in seminal plasma? A-Meta Analysis Oncotarget. 2018;9(36):24494–513.

    PubMed  Google Scholar 

  11. Samplaski MK, Clemesha CG. Discrepancies between the internet and academic literature regarding vitamin use for male infertility. Transl Androl Urol. 2018;7(2):S193–7. https://doi.org/10.21037/tau.2018.05.01.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barratt C, Björndahl L, De Jonge C, Lamb D, Martini FO, et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance—challenges and future research opportunities. Hum Reprod Update. 2017;23(6):660–80.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Godde JS, Ura K. Dynamic alterations of linker histone variants during development. Int J Dev Biol. 2009;53:215–24. 2. Gan H, Cai T, Lin X, Wu Y, Wang X, Yang F, et al. Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis. Mol Cell Proteomics 2013; 12: 1144–1157.

    Article  CAS  PubMed  Google Scholar 

  14. Pourmasumi S, Sabeti P, Rahiminia T, MangoliM E, Tabibnejad N, Talebi AR. The etiologies of sperm DNA abnormalities in male infertility: an assessment and review. Int J Reprod BioMed. 2017;15(6):331–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakkas D, Alvarez J. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  CAS  PubMed  Google Scholar 

  16. Burrello N, Arcidiacono G, Vicari E, Asero P, Di BD, De PA, et al. Morphologically normal spermatozoa of patients with secretory oligoasthenoteratozoospermia have an increased aneuploidy rate. Hum Reprod. 2004;19:2298–302.

    Article  PubMed  Google Scholar 

  17. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6. https://doi.org/10.1016/j.urology.2010.04.036. Epub 2010 Jun 22

    Article  PubMed  Google Scholar 

  18. Esteves SC, Sánchez-Martín F, Sánchez-Martín P, et al. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104:1398–405.

    Article  PubMed  Google Scholar 

  19. Suganuma R, Yanagimachi R, Meistrich ML. Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod. 2005;20:3101–8.

    Article  CAS  PubMed  Google Scholar 

  20. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Phys. 1943;138:512–8.

    Article  CAS  Google Scholar 

  21. Xie D, Lu C, Zhu Y, Zhu S, Yang EJ. Jin Xin. Analysis on the association between sperm DNA fragmentation index and conventional semen parameters, blood microelements and seminal plasma ROS in male patients with infertility. Exp Ther Med. 2018;15:5173–6.

    PubMed  PubMed Central  Google Scholar 

  22. Cho CL, Esteves S, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93.

    Article  CAS  PubMed  Google Scholar 

  23. Chen SS, Huang WJ, Chang LS, Wei YH. 8-hydroxy-20-deoxyguanosine in leukocyte DNA of spermatic vein as a biomarker of oxidative stress in patients with varicocele. J Urol. 2004;172(4 Pt 1):1418–21.

    Article  CAS  PubMed  Google Scholar 

  24. Lin J, Dhabuwala C, Li H. The role of apoptosis in infertile men with varicoceles: is the FAS system implicated? Fertil Steril. 2001;76:S197.

    Article  Google Scholar 

  25. Gual-Frau J, Abad C, Amengual MJ, Hannaoui N, Checa MA, Ribas-Maynou J, et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil. 2015;18:225–9.

    Article  CAS  Google Scholar 

  26. Smith R, Kaune H, Parodi D, Madariaga M, Ríos R, Morales I, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21:986–93.

    Article  CAS  PubMed  Google Scholar 

  27. Telli O, Sarici H, Kabar M, Ozgur BC, Resorlu B, Bozkurt S. Does varicocelectomy affect DNA fragmentation in infertile patients? Indian J Urol. 2015;31(2):116–9. https://doi.org/10.4103/0970-1591.152811.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah A, Sharma R, Sabanegh E. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod Biol Endocrinol. 2014;12:126. https://doi.org/10.1186/1477-7827-12-126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi X, Chan C, Waters T, Chi L, Chan D, Li TC. Lifestyle and demographic factors associated with human semen quality and sperm function. Syst Biol Reprod Med. 2018;64(5):358–67.

    Article  CAS  PubMed  Google Scholar 

  30. Agbaje I, Rogers D, McVicar C, McClure N, Atkinson A, Mallidis C, et al. Insulin dependent diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22:1871–7.

    Article  CAS  PubMed  Google Scholar 

  31. Raju R, Prakash GJ, Krishna M, Madan K, Narayana S, Krishna R. Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia. 2012;44:490–8.

    Article  CAS  Google Scholar 

  32. Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68:519–24.

    Article  CAS  PubMed  Google Scholar 

  33. Fraga CG, Motchnik PA, Shigenaga MK, et al. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A. 1991;88(24):11003–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Talebi AR, Khalili MA, Hossaini A. Assessment of nuclear DNA integrity of epididymal spermatozoa following experimental chronic spinal cord injury in the rat. Int J Androl. 2007;30:163–9.

    Article  PubMed  Google Scholar 

  35. Brackett NL, Ibrahim E, Grotas JA, Aballa TC, Lynne CM. Higher sperm DNA damage in semen from men with spinal cord injuries compared with controls. J Androl. 2008;29(1):93–9. discussion 100-1. Epub 2007 Sep 5

    Article  PubMed  Google Scholar 

  36. Potts JM, Sharma R, Pasqualotto F, Nelson D, Hall G, Agarwal A. Association of Ureaplasma urealyticum with abnormal reactive oxygen species levels and absence of leukocytospermia. J Urol. 2000;163:1775–8.

    Article  CAS  PubMed  Google Scholar 

  37. Komiya A, Kato T, Kawauchi Y, Watanabe A, Fuse H. Clinical factors associated with sperm DNA fragmentation in male patients with infertility. Sci World J. 2014;2014:868303.

    Google Scholar 

  38. Angelopoulou R, Plastira K, Msaouel P. Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA. Reprod Biol Endocrinol. 2007;5:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Youssry M, Ozmen B, Orief Y, Zohni K, Al-Hasani S. Human sperm DNA damage in the context of assisted reproductive techniques. Iran J Reprod Med. 2007;5:137–50.

    CAS  Google Scholar 

  40. Schmid T, Eskenazi B, Baumgartner A, Marchetti F, Young S, Weldon R, et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod. 2007;22(1):180–7. Epub 2006 Oct 19

    Article  CAS  PubMed  Google Scholar 

  41. Dupont C, Faure C, Sermondade N, Boubaya M, Eustache F, Clément P, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15(5):622–5. https://doi.org/10.1038/aja.2013.65. Epub 2013 Jun 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pasqualotto FF, Umezu FM, Salvador M, Borges E, Sobreiro BP, et al. Effect of cigarette smoking on antioxidant levels and presence of leukocytospermia in infertile men: a prospective study. Fertil Steril. 2008;90(2):278–83.

    Article  PubMed  Google Scholar 

  43. Yu B, Qi Y, Liu D, Gao X, Chen H, Bai C, et al. Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril. 2014;101:51–7.

    Article  CAS  PubMed  Google Scholar 

  44. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int. 2014;70:106–12. https://doi.org/10.1016/j.envint.2014.04.015. Epub 2014 Jun 10

    Article  PubMed  Google Scholar 

  45. Morris ID. Sperm DNA damage and cancer treat-ment. Int J Androl. 2002;25(5):255–61.

    Article  CAS  PubMed  Google Scholar 

  46. Safarinejad MR. Sperm DNA damage and semen quality impairment after treatment with selective serotonin reuptake inhibitors detected using semen analysis and sperm chromatin structure assay. J Urol. 2008;180:2124–8.

    Article  PubMed  Google Scholar 

  47. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73:459–64.

    Article  CAS  PubMed  Google Scholar 

  48. Wyrobek AJ. Methods and concepts in detecting abnormal reproductive outcomes of paternal origin. Reprod Toxicol. 1993;7:3–16.

    Article  PubMed  Google Scholar 

  49. Ji G, Gu A, Zhou Y, Shi X, Xia Y, Long Y, et al. Interactions between exposure to environmental polycyclic aromatic hydrocarbons and DNA repair gene polymorphisms on bulky DNA adducts in human sperm. PLoS One. 2010;5:e13145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129(4):505–14.

    Article  CAS  PubMed  Google Scholar 

  51. Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish first pregnancy planner study team. Fertil Steril. 2000;73(1):43–50.

    Article  PubMed  Google Scholar 

  52. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an in-dependent predictor of fertility in vivo: a case-control study. Int J Androl. 2010;33:e221–7.

    Article  PubMed  Google Scholar 

  53. Cho C, Agarwal A. Role of sperm DNA fragmentation in male factor infertility: a systematic review. Arab J Urol. 2017;16(1):21–34. https://doi.org/10.1016/j.aju.2017.11.002. eCollection 2018 Mar

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9. Epub 2006 Aug 18

    Article  CAS  PubMed  Google Scholar 

  55. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.

    Article  CAS  PubMed  Google Scholar 

  56. Rilcheva VS, Ayvazova NP, Ilieva LO, Ivanova SP, Konova EI. Sperm DNA integrity test and assisted reproductive technology (art) outcome. J Biomed Clin Res. 2016;9:21–9.

    Article  Google Scholar 

  57. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Bio Med Online. 2006;12(4):466–72.

    Article  CAS  Google Scholar 

  58. Li Z, Wang L, Cai J, Huang H. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23(9–10):367–76. Epub 2006 Oct 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cissen M, Mv W, Scholten I, MansellS BJP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS ONE. 2016;11(11):e0165125. https://doi.org/10.1371/journal.pone.0165125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng Z, Zhu L, Jiang H, Chen H, Chen Y, Dai Y. Sperm DNA fragmentation index and pregnancy outcome after IVF or ICSI: a meta-analysis. J Assist Reprod Genet. 2015;32:17–26. https://doi.org/10.1007/s10815-014-0374-1.

    Article  Google Scholar 

  61. Simon L, Emery BR, Carrell DT. Review: diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56. https://doi.org/10.1016/j.bpobgyn.2017.07.003. Epub 2017 Aug 2. Review

    Article  PubMed  Google Scholar 

  62. Bungum M, Bungum L, Giwercman A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl. 2011;13(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  63. Evgeni E, Lymberopoulos G, Gazouli M, Asimakopoulos B. Conventional semen parameters and DNA fragmentation in relation to fertility status in a Greek population. Eur J Obstet Gynecol Reprod Biol. 2015;188:17–23.

    Article  CAS  PubMed  Google Scholar 

  64. Varghese AC, Bragais F, Mukhopadhyay D, Kundu S, Pal M, Bhattacharyya A, Agarwal A. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia. 2009;41(4):207–15. https://doi.org/10.1111/j.1439-0272.2009.00917.x.

    Article  CAS  PubMed  Google Scholar 

  65. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. FertilSteril. 2015;103(3):e18–25.

    Google Scholar 

  66. Jarow J, Sigman M, Kolettis PN, et al. The optimal evaluation of the infertile male: best practice statement reviewed and validity confirmed 2011. Available online: https://www.auanet.org/education/guidelines/male-infertility-d.cfm

  67. Jungwirth A, Dieser T, Kopf Z, Krauss C, Minhas S, et al. EAU Guidelines on Male Infertility. Available online: https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Male-Infertility-2018-large-text.pdf.

  68. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935–50. https://doi.org/10.21037/tau.2016.10.03.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Selvam M, Agarwal A. A systematic review on sperm DNA fragmentation in male factor infertility: laboratory assessment. Arab J Urol. 2018;16:65–76.

    Article  Google Scholar 

  70. Agarwal A, Gupta S, Du Plessis S, Sharma R, Esteves SC, Cirenza C, et al. Abstinence time and its impact on basic and advanced semen parameters. Urology. 2016;94:102–10. https://doi.org/10.1016/j.urology.2016.03.059. Epub 2016 May 16.

    Article  PubMed  Google Scholar 

  71. Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocelerepair: a meta-analysis. Reprod BioMed Online. 2012;25(3):307–14. https://doi.org/10.1016/j.rbmo.2012.05.002. Epub 2012 May 23.

    Article  CAS  PubMed  Google Scholar 

  72. Greco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20(1):226–30. Epub 2004 Nov 11.

    Article  PubMed  Google Scholar 

  73. Wilding M, Coppola G, di Matteo L, Palagiano A, Fusco E, Dale B. Intracytoplasmic injection of morphologically selected spermatozoa (IMSI) improves outcome after assisted reproduction by deselecting physiologically poor quality spermatozoa. J Assist Reprod Genet. 2011;28(3):253–62. https://doi.org/10.1007/s10815-010-9505-5. Epub 2010 Nov 12.

    Article  PubMed  Google Scholar 

  74. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4(5):903–10. https://doi.org/10.1111/andr.12215. Epub 2016 May 27

    Article  CAS  PubMed  Google Scholar 

  75. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4(5):903–10. https://doi.org/10.1111/andr.12215.

    Article  CAS  PubMed  Google Scholar 

  76. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  77. Birch CS, Brasch NE, McCaddon A, Williams JH. A novel role for vitamin B (12): cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med. 2009;47(2):184–8. https://doi.org/10.1016/j.freeradbiomed.2009.04.023. Epub 2009 May 3.

    Article  CAS  PubMed  Google Scholar 

  78. Kojo S. Vitamin C: basic metabolism and its function as an index of oxidative stress. Curr Med Chem. 2004;11(8):1041–64.

    Article  CAS  PubMed  Google Scholar 

  79. Burton GW, Joyce A, Ingold KU. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983;221:281–90.

    Article  CAS  PubMed  Google Scholar 

  80. Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T. Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radic Biol Med. 2001;30(12):1390–9.

    Article  CAS  PubMed  Google Scholar 

  81. Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6(2):466–88. https://doi.org/10.3390/nu6020466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanphaichitr V, Leelahagul P. Carnitine metabolism and human carnitine deficiency. Nutrition. 1993;9:246–54.

    CAS  PubMed  Google Scholar 

  83. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-jBsignaling Inflammopharmacol Inflammopharmacology. 2017;25(1):11–24. https://doi.org/10.1007/s10787-017-0309-4. Epub 2017 Jan 12.

    Article  CAS  PubMed  Google Scholar 

  84. Gvozdj A, Kucharsk J, Dubravicky J, Mojto V, Singh RB. CoenzymeQ10, 𝛼-tocopherol,andoxidativestresscould be important metabolic biomarkers of male infertility. Dis Markers. 2015;15:6–15.

    Google Scholar 

  85. Agarwal A, Sekhon LH. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: is it justified. Indian J Urol. 2011;27(1):74–85. https://doi.org/10.4103/0970-1591.78437.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cetinkaya A, Bulbuloglu E, Belge Kurutas E, Ciralik H, Kantarceken B, Buyukbese MA. Beneficial effects of n-acetylcysteine on acetic acid-induced colitis in rats. Tohoku J Exp Med. 2005;206(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  87. Chyra-Jach D, Kaletka Z, Dobrakowski M, Machoń-Grecka A, Kasperczyk S, Birkner E, Kasperczyk A. The associations between infertility and antioxidants, Proinflammatory cytokines, and chemokines. Oxidative Med Cell Longev. 2018;2018:8354747. https://doi.org/10.1155/2018/8354747. eCollection 2018.

    Article  CAS  Google Scholar 

  88. Henkel R, Sandhu IS, Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia. 2018:e13162. https://doi.org/10.1111/and.13162.

  89. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database SystRev. 2014;12:CD007411.

    Google Scholar 

  90. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.

    Article  CAS  PubMed  Google Scholar 

  91. Martinez-Soto JC, Domingo JC, Cardobilla LP, et al. Effect of dietary DHA supplementation on sperm DNA integrity. Fertil Steril. 2010;94(4):S235–6.

    Article  Google Scholar 

  92. Martínez-Soto JC, Domingo JC, Cordobilla B, et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med. 2016;62:387–95.

    Article  CAS  PubMed  Google Scholar 

  93. Abad C, Amengual MJ, Gosalvez J, et al. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45(3):211–6. https://doi.org/10.1111/and.12003. Epub 2012 Sep 3

    Article  CAS  PubMed  Google Scholar 

  94. Tunc O, Thompson J, Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod BioMed Online. 2009;18(6):761–8.

    Article  CAS  PubMed  Google Scholar 

  95. Tremellen K, Miari G, Froiland D, Thompson J. A randomized control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust N Z J Obstet Gynaecol. 2007;47:216–21.

    Article  PubMed  Google Scholar 

  96. Piomboni P, Gambera L, Serafini F, et al. Sperm quality improvement after natural anti-oxidant treatment of asthenoteratospermic men with leukocytospermia. Asian J Androl. 2008;10:201–6.

    Article  PubMed  Google Scholar 

  97. Omu AE, Al-Azemi MK, Kehinde EO, et al. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract. 2008;17(2):108–16. https://doi.org/10.1159/000112963. Epub 2008 Feb 19.

    Article  CAS  PubMed  Google Scholar 

  98. Vani K, Kurakula M, Syed R, et al. Clinical relevance of vitamin C among lead-exposed infertile men. Genet Test Mol Biomarkers. 2012;16(9):1001–6. https://doi.org/10.1089/gtmb.2012.0027. Epub 2012 Jun 25.

    Article  CAS  PubMed  Google Scholar 

  99. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16(1):113–24. https://doi.org/10.1016/j.aju.2017.11.013. eCollection 2018 Mar.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Greco E, Romano S, Iacobelli M, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20(9):2590–4. Epub 2005 Jun 2.

    Article  CAS  PubMed  Google Scholar 

  101. Ménézo YJ, Hazout A, Panteix G, et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod BioMed Online. 2007;14(4):418–21.

    Article  PubMed  Google Scholar 

  102. Amar E, Cornet D, Cohen M, Ménézo Y. Treatment for high levels of sperm DNA fragmentation and nuclear decondensation: sequential treatment with a potent antioxidant followed by stimulation of the one-carbon cycle vs one-carbon cycle Back-up alone. Austin J ReprodMed Infertil. 2015;2(1):1006.

    Google Scholar 

  103. Gil-Villa AM, Cardona-Maya W, Agarwal A, Sharma R, Cadavid A. Role of male factor in early recurrent embryo loss: do antioxidants have any effect? Fertil Steril. 2009;92(2):565–71. https://doi.org/10.1016/j.fertnstert.2008.07.1715. Epub 2008 Sep 30.

    Article  PubMed  Google Scholar 

  104. Gual-Frau J, Abad C, Amengual MJ, Hannaoui N, Checa MA, Ribas-Maynou J, et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb). 2015;18(3):225–9. https://doi.org/10.3109/14647273.2015.1050462. Epub 2015 Jun 19.

    Article  CAS  Google Scholar 

  105. Stenqvist A, Oleszczuk K, Leijonhufvud I, Giwercman A. Impact of antioxidant treatment on DNA fragmentation index: a double-blind placebo-controlled randomized trial. Andrology. 2018;6(6):1–6.

    Google Scholar 

  106. Yoshihara D, Fujiwara N, Suzuki K. Antioxidants: benefits and risks for long-term health. Maturitas. 2010;67(2):103–7. https://doi.org/10.1016/j.maturitas.2010.05.001. Epub 2010 Jun 3.

    Article  CAS  PubMed  Google Scholar 

  107. Brianc S, Boini S, Bertrais S, Guillemin F, Galan P, Hercberg S. Long-term antioxidant supplementation has no effect on health-related quality of life: The randomized, double-blind, placebo-controlled, primary prevention SU.VI.MAX trial. Int J Epidemiol. 2011;40:1605–16.

    Article  Google Scholar 

  108. Halliwell B. The antioxidant paradox. Lancet. 2000;355(9210):1179–80.

    Article  CAS  PubMed  Google Scholar 

  109. Henkel R, Sandhu IS, Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia. 2018:e13162. https://doi.org/10.1111/and.13162.

  110. Verma A, Kanwar KC. Human sperm motility and lipid peroxidation in different ascorbic acid concentrations: an in vitro analysis. Andrologia. 1998;30(6):325–9.

    Article  CAS  PubMed  Google Scholar 

  111. Bleau G, Lemarbre J, Faucher G, Roberts KD, Chapdelaine A. Semen selenium and human fertility. Fertil Steril. 1984;42(6):890–4.

    Article  CAS  PubMed  Google Scholar 

  112. Cavallini G, Ferraretti AP, Gianaroli L, Biagiotti G, Vitali G. Cinnoxicam and L- carnitine/acetyl-L-carnitine treatment for idiopathic and varicocoele associated oligoasthenospermia. J Androl. 2004;25(5):761–70.

    Article  CAS  PubMed  Google Scholar 

  113. Omu AE, Dashti H, Al-Othman S. Treatment of asthenozoospermia with zinc sulphate: andrological, immunological and obstetric outcome. Eur J Obstet Gynecol Reprod Biol. 1998;79(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  114. Suleiman SA, Ali ME, Zaki ZM, El-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: Protective role of vitamin E. J Androl. 1996;17(5):530–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinez, M.P., Majzoub, A., Agarwal, A. (2020). Antioxidants Use and Sperm DNA Damage. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics