Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 835))

Abstract

A semi-process is an analog of the semi-flow for non-autonomous differential equations or inclusions. We prove an abstract result on the existence of measurable semi-processes in the situations where there is no uniqueness. Also, we allow solutions to blow up in finite time and then obtain local semi-processes.

To dear friend Vladik on the occasion of his 65th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.M. Dafermos, An invariance principle for compact processes. J. Differ. Equations 9, 239–252 (1971) (erratum, ibid. 10 (1971), 179–180)

    Google Scholar 

  2. J. Hale, Theory of Functional Differential Equations (Springer, Berlin, 1977)

    Book  Google Scholar 

  3. H. Kneser, Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lipschitzschen Bedingung nicht genügt. S. B. Preuss. Akad 4, 171–174 (1923)

    MATH  Google Scholar 

  4. J.E. Cardona, On Statistical Solutions of Nonlinear Evolution Equations. Ph.D. Thesis, University of Miami, Coral Gables (2017)

    Google Scholar 

  5. J.E. Cardona, L. Kapitanski, Semiflow Selection and Markov Selection Theorems. arXiv:1707.04778

  6. Ch. Aliprantis, K. Border, Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd edn. (Springer, Berlin, 2006)

    Google Scholar 

  7. S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory. Mathematics and Its Applications, vol. 149 (Kluwer Academic Publishers, 1997)

    Google Scholar 

  8. A.D. Ioffe, Survey of measurable selection theorems: Russian literature supplement. SIAM J. Control Opt. 16(5), 728–732 (1978)

    Article  MathSciNet  Google Scholar 

  9. D.H. Wagner, Survey of measurable selection theorems. SIAM J. Control Optim. 15(5), 859–903 (1977)

    Article  MathSciNet  Google Scholar 

  10. F. Flandoli, M. Romito, Markov selections for the 3D stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 140, 407–458 (2008)

    Article  MathSciNet  Google Scholar 

  11. B. Goldys, M. Röckner, X. Zhang, Martingale solutions and Markov selections for stochastic partial differential equations. Stoch. Process. Their Appl. 119(5), 1725–1764 (2009)

    Article  MathSciNet  Google Scholar 

  12. N.V. Krylov, On the selection of a Markov process from a system of processes and the construction of quasi-diffusion processes. Izv. Akad. Nauk SSSR Ser. Mat. 37(3), 691–708 (1973)

    MathSciNet  MATH  Google Scholar 

  13. D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes (Springer, Berlin, 1979)

    MATH  Google Scholar 

  14. N.P. Bhatia, O. Hájek, Local Semi-Dynamical Systems. Lecture Notes in Mathematics, vol. 90. (Springer, 1969)

    Google Scholar 

  15. O. Hájek, Theory of processes. I. Czechoslovak Math. J. 17(92), 159–199 (1967)

    MathSciNet  MATH  Google Scholar 

  16. O. Hájek, Theory of processes. II. Czechoslovak Math. J. 17(92), 372–398 (1967)

    MathSciNet  MATH  Google Scholar 

  17. R.J. Sacker, G.R. Sell, Skew-product flows, finite extensions of minimal transformation groups and almost periodic differential equations. Bull. AMS 79(4), 802–805 (1973)

    Article  MathSciNet  Google Scholar 

  18. G.R. Sell, Nonautonomous differential equations and topological dynamics. I, II, Trans. Am. Math. Soc. 127, 241–262, 263–283 (1967)

    Google Scholar 

  19. C. Berge, Topological Spaces: Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity (Dover Books on Mathematics. Reprint of the Oliver & Boyd, Edinburgh and London, 1963 edition)

    Google Scholar 

  20. K. Kuratowski, Topology, vol. 1 (Academic Press, 2014)

    Google Scholar 

  21. K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors. Bull. Acad. Pol. Sci. 13, 397–403 (1965)

    MathSciNet  MATH  Google Scholar 

  22. D. Blount, M.A. Kouritzin, On convergence determining and separating classes of functions. Stoch. Process. Their Appl. 120, 1898–1907 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by Colciencias (Departamento Administrativo de Ciencia, Tecnología e Innovación) Grant 6171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Kapitanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardona, J.E., Kapitanski, L. (2020). Measurable Process Selection Theorem and Non-autonomous Inclusions. In: Kosheleva, O., Shary, S., Xiang, G., Zapatrin, R. (eds) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence, vol 835. Springer, Cham. https://doi.org/10.1007/978-3-030-31041-7_23

Download citation

Publish with us

Policies and ethics