Skip to main content

Mental Capacities of Fishes

  • Chapter
  • First Online:
Neuroethics and Nonhuman Animals

Part of the book series: Advances in Neuroethics ((AIN))

Abstract

Fish models are increasingly used in a wide variety of experimental contexts and their adoption is growing globally. This chapter reviews the evidence for sentience and cognitive abilities in fishes to highlight the growing empirical evidence of the mental capacities of fish. The definition of sentience is presented along with the scientific data pertinent to understanding what fishes are capable of, as well as higher order cognitive abilities such as numerical skills and the capacity for learning and memory. Being able to experience positive and negative welfare states such as pain, fear, and stress is highly debated for fishes; thus this chapter reviews the evidence for and arguments against conscious perception of pain and fear. If suffering and sentience are accepted in fishes, this has ethical implications for the way in which we use fish in scientific studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kenny A. Descartes’ philosophical letters. Oxford: Clarendon Press; 1970.

    Google Scholar 

  2. Harnad S. Other bodies, other minds: a machine incarnation of an old philosophical problem. Minds Mach. 1991;1(1):43–54.

    Google Scholar 

  3. Sneddon LU, Elwood RW, Adamo S, Leach MC. Defining and assessing pain in animals. Anim Behav. 2014;97:201–12.

    Article  Google Scholar 

  4. Stamp Dawkins M. Why animals matter: animal consciousness, animal welfare, and human well-being. Oxford: Oxford University Press; 2012.

    Google Scholar 

  5. Griffin D. The question of animal awareness. New York: Rockefeller; 1976.

    Google Scholar 

  6. Duncan IJH. The changing concept of animal sentience. Appl Anim Behav Sci. 2006;100(1–2):11–9.

    Article  Google Scholar 

  7. Proctor H. Animal sentience: where are we and where are we heading? Animals. 2012;2(4):628–39.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broom DM. Sentience and animal welfare. Wallingford: CABI; 2014.

    Book  Google Scholar 

  9. Sneddon LU, Lopez-Luna J, Wolfenden DCC, Leach MC, Valentim AM, Steenbergen PJ, et al. Fish sentience denial: muddying the waters. Anim Sentience. 2018;3(21):1–11.

    Google Scholar 

  10. Sneddon LU. Pain in aquatic animals. J Exp Biol. 2015;218(7):967–76.

    Article  PubMed  Google Scholar 

  11. Home Office UK (2017). https://www.gov.uk/government/statistics/statistics-of-scientific-procedures-on-living-animals-great-britain-2017. Accessed 21 July 2018.

  12. Brandl SJ, Bellwood DR. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci Rep. 2015;5:14556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griffiths SW, Magurran AE. Familiarity in schooling fish: how long does it take to acquire? Anim Behav. 1997;53(5):945–9.

    Article  Google Scholar 

  14. Brown C. Do female rainbowfish (Melanotaenia spp.) prefer to shoal with familiar individuals under predation pressure? J Ethol. 2002;20(2):89–94.

    Article  Google Scholar 

  15. Bergmüller R, Taborsky M. Experimental manipulation of helping in a cooperative breeder: helpers ‘pay to stay’ by pre-emptive appeasement. Anim Behav. 2005;69:19–28.

    Article  Google Scholar 

  16. Bergmüller R, Heg D, Taborsky M. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proc R Soc Lond B. 2005;272:325–31.

    Article  Google Scholar 

  17. Bshary R, Schäffer D. Choosy reef fish select cleaner fish that provide high-quality service. Anim Behav. 2002;63:557–64.

    Article  Google Scholar 

  18. Bshary R, Grutter AS. Image scoring and cooperation. Nature. 2006;441:975–8.

    Article  CAS  PubMed  Google Scholar 

  19. Dugatkin LA, Alfieri M. Tit-for-tat in guppies (Poecilia reticulata): the relative nature of cooperation and defection during predator inspection. Evol Ecol. 1991;5(3):300–9.

    Article  Google Scholar 

  20. Bshary R, Hohner A, Ait-el-Djoudi K, Fricke H. Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol. 2006;4(12):e431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Brown C. Fish intelligence, sentience and ethics. Anim Cogn. 2015;18:1–17.

    Article  PubMed  Google Scholar 

  22. Brown C, Laland KN. Social learning in Fishes. In: Brown C, Laland KN, Krause J, editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell; 2011. p. 186–202.

    Chapter  Google Scholar 

  23. Brown C, Laland KN, Krause J. Fish cognition and behavior. In: Brown C, Laland KN, Krause J, editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell Publishing; 2011. p. 1–9.

    Chapter  Google Scholar 

  24. Bshary R, Wickler W, Fricke H. Fish cognition: a primate’s eye view. Anim Cogn. 2002;5(1):1–13.

    Article  PubMed  Google Scholar 

  25. Brown C, Warburton K. Social mechanisms enhance escape responses in shoals of rainbowfish, Melanotaenia duboulayi. Environ Biol Fish. 1999;56(4):455–9.

    Article  Google Scholar 

  26. Brown C, Laland KN. Social learning of a novel avoidance task in the guppy: conformity and social release. Anim Behav. 2002;64:41–7.

    Article  Google Scholar 

  27. Brown C, Laland KN. Social enhancement and social inhibition of foraging behavior in hatchery-reared Atlantic salmon. J Fish Biol. 2002;61(4):987–98.

    Article  Google Scholar 

  28. Trompf L, Brown C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim Behav. 2014;88:99–106.

    Article  Google Scholar 

  29. Laland KN. Animal cultures. Curr Biol. 2008;18(9):R366–70.

    Article  CAS  PubMed  Google Scholar 

  30. Laland KN, Williams K. Social transmission of maladaptive information in the guppy. Behav Ecol. 1998;9(5):493–9.

    Article  Google Scholar 

  31. Laland KN, Williams K. Shoaling generates social learning of foraging information in guppies. Anim Behav. 1997;53(6):1161–9.

    Article  CAS  PubMed  Google Scholar 

  32. Helfman GS, Schultz ET. Social transmission of behavioral traditions in a coral reef fish. Anim Behav. 1984;32:379–84.

    Article  Google Scholar 

  33. White GE, Brown C. Site fidelity and homing behavior in intertidal fishes. Mar Biol. 2013;160(6):1365–72.

    Article  Google Scholar 

  34. Aronson LR. Orientation and jumping behavior in the gobiid fish Bathygobius soporator. Am Mus Novit. 1951;1486:1–12.

    Google Scholar 

  35. White GE, Brown C. A comparison of spatial learning and memory capabilities in intertidal gobies. Behav Ecol Sociobiol. 2014;68(9):1393–401.

    Article  Google Scholar 

  36. White GE, Brown C. Microhabitat use affects brain size and structure in intertidal gobies. Brain Behav Evol. 2015;85(2):107–16.

    Article  PubMed  Google Scholar 

  37. White GE, Brown C. Cue choice and spatial learning ability are affected by habitat complexity in intertidal gobies. Behav Ecol. 2015;26(1):178–84.

    Article  Google Scholar 

  38. White GE, Brown C. Variation in brain morphology of intertidal gobies: a comparison of methodologies used to quantitatively assess brain volumes in fish. Brain Behav Evol. 2015;85(4):245–56.

    Article  PubMed  Google Scholar 

  39. Pravosudov VV, Clayton NS. A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav Neurosci. 2002;116(4):515–22.

    Article  PubMed  Google Scholar 

  40. Gaulin SJC, Fitzgerald RW. Sexual selection for spatial-learning ability. Anim Behav. 1989;37:322–31.

    Article  Google Scholar 

  41. Carbia PS, Brown C. Environmental enrichment influences spatial learning ability in captive-reared intertidal goby (Bathygobius cocosensis). Anim Cogn. 2019;22(1):89–98.

    Article  PubMed  Google Scholar 

  42. Carbia P, Brown C. Sexually dimorphic spatial learning is seasonally driven in the intertidal Cocos Frillgoby (Bathygobius cocosensis); 2019, Anim Cogn, In Press.

    Google Scholar 

  43. Pyter LM, Reader BF, Nelson RJ. Short photoperiods impair spatial learning and alter hippocampal dendritic morphology in adult male white-footed mice (Peromyscus leucopus). J Neurosci. 2005;25(18):4521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Agrillo C, Piffer L, Bisazza A, Butterworth B. Evidence for two numerical systems that are similar in humans and guppies. PLoS One. 2012;7(2):e31923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ward C, Smuts BB. Quantity-based judgments in the domestic dog (Canis lupus familiaris). Anim Cogn. 2007;10(1):71–80.

    Article  PubMed  Google Scholar 

  46. Hunt S, Low J, Burns KC. Adaptive numerical competency in a food-hoarding songbird. Proc R Soc Lond B Biol Sci. 2008;267:2373–9.

    Article  Google Scholar 

  47. Bisazza A, Agrillo C, Lucon-Xiccato T. Extensive training extends numerical abilities of guppies. Anim Cogn. 2014;17(6):1413–9.

    Article  PubMed  Google Scholar 

  48. DeLong CM, Barbato S, O’Leary T, Wilcox KT. Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behav Process. 2017;141:172–83.

    Article  Google Scholar 

  49. Arsalidou M, Taylor MJ. Is 2+2=4? meta-analyses of brain areas needed for numbers and calculations. NeuroImage. 2011;54(3):2382–93.

    Article  PubMed  Google Scholar 

  50. Chassy P, Grodd W. Comparison of quantities: core and format-dependent regions as revealed by fMRI. Cereb Cortex. 2012;22(6):1420–30.

    Article  PubMed  Google Scholar 

  51. Bisazza A, Brown C. Lateralization of cognitive function in fishes. In: Brown C, Laland K, Krause J, editors. Fish cognition and behavior. 2nd ed. Cambridge: Wiley-Blackwell; 2011. p. 298–324.

    Chapter  Google Scholar 

  52. Magat M, Brown C. Laterality enhances cognition in Australian parrots. Proc R Soc Lond B Biol Sci. 2009;276(1676):4155–62.

    Article  Google Scholar 

  53. Bibost AL, Brown C. Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi. Anim Cogn. 2014;17(5):1045–51.

    Article  PubMed  Google Scholar 

  54. Dadda M, Agrillo C, Bisazza A, Brown C. Laterality enhances numerical skills in the guppy, Poecilia reticulata. Front Behav Neurosci. 2015;9:285.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool. 1990;68(4):619–40.

    Article  Google Scholar 

  56. Brown GE, Rive AC, Ferrari MCO, Chivers DP. The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav Ecol Sociobiol. 2006;61(1):9–16.

    Article  Google Scholar 

  57. Hellström G, Heynen M, Oosten J, Borcherding J, Magnhagen C. The effect of group size on risk taking and social conformity in Eurasian perch. Ecol Freshw Fish. 2011;20(4):499–502.

    Article  Google Scholar 

  58. Werner EE, Gilliam JF, Hall DJ, Mittelbach GG. An experimental test of the effects of predation risk on habitat use in fish. Ecology. 1983;64(6):1540–8.

    Article  Google Scholar 

  59. Killen SS, Marras S, McKenzie DJ. Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J Anim Ecol. 2011;80(5):1024–33.

    Article  PubMed  Google Scholar 

  60. Dunlop R, Millsopp S, Laming P. Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Appl Anim Behav Sci. 2006;97(2):255–71.

    Article  Google Scholar 

  61. Millsopp S, Laming P. Trade-offs between feeding and shock avoidance in goldfish (Carassius auratus). Appl Anim Behav Sci. 2008;113(1):247–54.

    Article  Google Scholar 

  62. Bentham J. An introduction to the principles of morals and legislation. Oxford: Clarendon Press; 1823.

    Google Scholar 

  63. Rose JD. The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci. 2002;10:1–38.

    Article  Google Scholar 

  64. Sneddon LU. Anatomical and electrophysiological analysis of the trigeminal nerve in a teleost fish, Oncorhynchus mykiss. Neurosci Lett. 2002;319(3):167–71.

    Article  CAS  PubMed  Google Scholar 

  65. Sneddon LU. Comparative physiology of nociception and pain. Physiology. 2018;33:63–73.

    Article  CAS  PubMed  Google Scholar 

  66. Key B. Why fish do not feel pain. Anim Sentience. 2016;1(3):1.

    Google Scholar 

  67. Sneddon LU, Leach MC. Anthropomorphic denial of fish pain. Anim Sentience. 2016;1(3):28.

    Google Scholar 

  68. Damasio A, Damasio H. Pain and other feelings in humans and animals. Anim Sentience. 2016;1(3):33.

    Google Scholar 

  69. Merker BH. The line drawn on pain still holds. Anim Sentience. 2016;1(3):46.

    Google Scholar 

  70. Curtright A, Rosser M, Goh S, Keown B, Wagner E, Sharifi J, et al. Modeling nociception in zebrafish: a way forward for unbiased analgesic discovery. PLoS One. 2015;10:e0116766.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Magalhaes FEA, de Sousa CAP, Santos SAA, Menezes RB, Batista FLA, Abreu ÂO, et al. Adult zebrafish (Danio rerio): an alternative behavioral model of Formalin-induced nociception. Zebrafish. 2017;14(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  72. Schroeder P, Sneddon LU. Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach. Appl Anim Behav Sci. 2017;187:93–102.

    Article  Google Scholar 

  73. Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Activity reduced by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J Exp Biol. 2017a;220:1451–8.

    Article  PubMed  Google Scholar 

  74. Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of analgesic drugs on the behavioral responses of larval zebrafish to potentially noxious temperatures. Appl Anim Behav Sci. 2017b;188:97–105.

    Article  Google Scholar 

  75. Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of stress, fear and anxiety on the nociceptive responses of larval zebrafish. PLoS One. 2017c;12(8):e0181010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lopez-Luna J, Canty MN, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Behavioral responses of fish larvae modulated by analgesic drugs after a stress exposure. Appl Anim Behav Sci. 2017d;195:115–20.

    Article  Google Scholar 

  77. Taylor JC, Dewberry LS, Totsch SK, Yessick LR, DeBerry JJ, Watts SA, Sorge RE. A novel zebrafish-based model of nociception. Physiol Behav. 2017;174:83–8.

    Article  CAS  PubMed  Google Scholar 

  78. Fendt M, Fanselow MS. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev. 1999;23:743–60.

    Article  CAS  PubMed  Google Scholar 

  79. Gorissen M, Manuel R, Pelgrim TNM, Mes W, de Wolf MJS, Zethof J, et al. Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish. Genes Brain Behav. 2015;14:428–38.

    Article  CAS  PubMed  Google Scholar 

  80. Nathan FM, Ogawa S, Pahar IS. Kisspeptin1 modulate odorant evoked fear response in two serotonin receptor subtypes (5-HT1A and 5-HT2) in zebrafish. J Neurochem. 2015;133(6):870–8.

    Article  CAS  PubMed  Google Scholar 

  81. Perathoner S, Cordero-Maldonado ML, Crawford AD. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J Neurosci Res. 2016;94(6):445–62.

    Article  CAS  PubMed  Google Scholar 

  82. Portavella M, Vargas JP, Torres B, Salas C. The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull. 2002;57(3–4):397–9.

    Article  CAS  PubMed  Google Scholar 

  83. Maximino C, Marques de Brito T, Dias CA, Gouveia A Jr, Morato S. Scototaxis as anxiety-like behavior in fish. Nat Protoc. 2010;5(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  84. Rehnberg BG, Bates EH, Smith RJF, Sloley BD, Richardson JS. Brain benzodiazepine receptors in fathead minnows and the behavioral-response to alarm pheromone. Pharmacol Biochem Behav. 1989;33(2):435–42.

    Article  CAS  PubMed  Google Scholar 

  85. Crawley JN. Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev. 1985;9:37–44.

    Article  CAS  PubMed  Google Scholar 

  86. Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, DiLeo J, et al. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull. 2011;85:58–63.

    Article  CAS  PubMed  Google Scholar 

  87. Hedayatirad M, Nematollahi MA, Forsatkar MN, Brown C. Prozac impacts lateralization of aggression in male Siamese fighting fish. Ecotoxicol Environ Saf. 2017;140:84–8.

    Article  CAS  PubMed  Google Scholar 

  88. Soares MC, Oliveira RF, Ros AFH, Grutter AS, Bshary R. Tactile stimulation lowers stress in fish. Nat Commun. 2011;2:534.

    Article  PubMed  CAS  Google Scholar 

  89. Faustino AI, Tacão-Monteiro A, Oliveira RF. Mechanisms of social buffering of fear in zebrafish. Sci Rep. 2017;7:44329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. White LJ, Thomson JS, Pounder KC, Coleman RC, Sneddon LU. The impact of social context on behavior and the recovery from welfare challenges in zebrafish, Danio rerio. Anim Behav. 2017;132:189–99.

    Article  Google Scholar 

  91. Ward AJW, Hart PJB. The effects of kin and familiarity on interactions between fish. Fish Fish. 2003;4(4):348–58.

    Article  Google Scholar 

  92. Gerlach G, Lysiak N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim Behav. 2006;71(6):1371–7.

    Article  Google Scholar 

  93. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C. Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Biol Sci. 2008;275(1647):2165–70.

    Article  Google Scholar 

  94. Brown GE, Smith RJ. Fathead minnows use chemical cues to discriminate natural shoalmates from unfamiliar conspecifics. J Chem Ecol. 1994;20(12):3051–61.

    Article  CAS  PubMed  Google Scholar 

  95. Magurran AE, Seghers BH, Shaw PW, Carvalho GR. Schooling preferences for familiar fish in the guppy, Poecilia reticulata. J Fish Biol. 1994;45(3):401–6.

    Article  Google Scholar 

  96. Waas JR, Colgan PW. Male sticklebacks can distinguish between familiar rivals on the basis of visual cues alone. Anim Behav. 1994;47(1):7–13.

    Article  Google Scholar 

  97. Satoh S, Tanaka H, Kohda M. Facial recognition in a discus fish (Cichlidae): experimental approach using digital models. PLoS One. 2016;11(5):e0154543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Newport C, Wallis G, Reshitnyk Y, Siebeck UE. Discrimination of human faces by archerfish (Toxotes chatareus). Sci Rep. 2016;6:27523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arnold KE. Kin recognition in rainbowfish (Melanotaenia eachamensis): sex, sibs and shoaling. Behav Ecol Sociobiol. 2000;48(5):385–91.

    Article  Google Scholar 

  100. Olsen KH, Grahn M, Lohm J, Langefors A. MHC and kin recognition in juvenile Artic charr, Salvelinus alpinus (L.). Anim Behav. 1998;56(2):319–27.

    Article  CAS  PubMed  Google Scholar 

  101. Peuhkuri N, Seppa P. Do three-spined sticklebacks group with kin? Ann Zool Fenn. 1998;35:21–7.

    Google Scholar 

  102. Olsen KH, Jarvi T. Effects of kinship on aggression and RNA content in juvenile Arctic charr. J Fish Biol. 1997;51(2):422–35.

    CAS  Google Scholar 

  103. Frommen JG, Luz C, Bakker TCM. Kin discrimination in sticklebacks is mediated by social learning rather than innate recognition. Ethology. 2007;113(3):276–82.

    Article  Google Scholar 

  104. Russell ST, Kelley JL, Graves JA, Magurran AE. Kin structure and shoal composition dynamics in the guppy, Poecilia reticulata. Oikos. 2004;106(3):520–6.

    Article  Google Scholar 

  105. Oulton LJ, Haviland V, Brown C. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos. PLoS One. 2013;8(10):e76061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Atherton JA, McCormik MI. Kin recognition in embryonic damselfishes. Oikos. 2017;126(7):1062–169.

    Article  Google Scholar 

  107. Gallup GG. Chimpanzees: self-recognition. Science. 1970;167:86–7.

    Article  Google Scholar 

  108. Plotnik JM, de Waal FBM, Reiss D. Self-recognition in an Asian elephant. Proc Natl Acad Sci U S A. 2006;103(45):17053–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prior H, Schwarz A, Güntürkün O. Mirror-induced behavior in the magpie (Pica pica): evidence of self-recognition. PLoS Biol. 2008;6(8):e202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Verbeek P, Iwamoto T, Murakami N. Differences in aggression between wild-type and domesticated fighting fish are context dependent. Anim Behav. 2007;73(1):75–83.

    Article  Google Scholar 

  111. Desjardins JK, Fernald RD. What do fish make of mirror images? Biol Lett. 2010;6(6):744–7.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Suddendorf T, Butler DL. The nature of visual self-recognition. Trends Cogn Sci. 2013;17:121–7.

    Article  PubMed  Google Scholar 

  113. Balzarini V, Taborsky M, Wanner S, Koch F, Frommen J. Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behav Ecol Sociobiol. 2014;68:871–8.

    Article  Google Scholar 

  114. Forsatkar MN, Mematollahi MA, Brown C. Male Siamese fighting fish use fill flaring as the first display towards territorial intruders. J Ethol. 2017;35:51–9.

    Article  Google Scholar 

  115. Hotta T, Komiyama S, Kohda M. A social cichlid fish failed to pass the mark test. Anim Cogn. 2018;21(1):127–36.

    Article  PubMed  Google Scholar 

  116. Kohda M, Takashi H, Takeyama T, Awata S, Tanaka H, Asai J, et al. Cleaner wrasse pass the mark test: what are the implications for consciousness and self-awareness testing in animals? BioRxivorg. 2018; https://doi.org/10.1101/397067.

  117. Ari C, D’Agostino DP. Contingency checking and self-directed behaviors in giant manta rays: do elasmobranchs have self-awareness? J Ethol. 2016;34:167–74. https://doi.org/10.1007/s10164-016-0462-z.

    Article  Google Scholar 

  118. Reusch TB, Häberli MA, Aeschlimann PB, Milinski M. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature. 2001;414(6861):300.

    Article  CAS  PubMed  Google Scholar 

  119. Milinski M, Griffiths S, Wegner KM, Reusch TB, Haas-Assenbaum A, Boehm T. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci U S A. 2005;102(12):4414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M. Female sticklebacks (Gasterosteus aculeatus) use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol. 2003;54(2):119–26.

    Article  Google Scholar 

  121. Fitzgerald GJ, Morrissette J. Kin recognition and choice of shoal mates by threespine sticklebacks. Ethol Ecol Evol. 1992;4(3):273–83.

    Article  Google Scholar 

  122. Mehlis M, Bakker T, Frommen J. Smells like sib spirit: kin recognition in three-spined sticklebacks (Gasterosteus aculeatus) is mediated by olfactory cues. Anim Cogn. 2008;11(4):643–50.

    Article  PubMed  Google Scholar 

  123. Thünken T, Waltschyk N, Bakker T, Kullmann H. Olfactory self-recognition in a cichlid fish. Anim Cogn. 2009;12(5):717–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne U. Sneddon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sneddon, L.U., Brown, C. (2020). Mental Capacities of Fishes. In: Johnson, L., Fenton, A., Shriver, A. (eds) Neuroethics and Nonhuman Animals. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-030-31011-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31011-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31010-3

  • Online ISBN: 978-3-030-31011-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics