Skip to main content
Log in

Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Cerebral lateralization has been suggested to convey a selective advantage to individuals by enhancing their cognitive abilities. Few, however, have explicitly compared the cognitive ability of animals with strongly contrasting laterality. Here, we examined the influence of laterality on learning performance in the crimson spotted rainbowfish, Melanotaenia duboulayi, using a classical conditioning paradigm. We also compared the learning ability of wild caught and captive-reared fish to examine the influence of rearing environment on cognitive performance. Laterality was established by observing which eye fish preferred to use while viewing their mirror image. Subjects were then conditioned to associate the appearance of a red light with a food reward over 7 days. Our results revealed that left-lateralized fish learned the conditioning task faster than right-lateralized. These results provide further evidence that cerebral lateralization can play important roles in cognitive function which likely have diverse fitness consequences for animals in their natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen M (1983) Models of hemispheric specialization. Psychol Bull 93(1):73–104

    Article  CAS  PubMed  Google Scholar 

  • Andrew RJ, Osorio D, Budaev S (2009) Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick. Phil Trans R Soc Lon B 364:983–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bibost A-L, Brown C (2013) Laterality influences schooling position in rainbowfish, Mealnotaenia spp. PLoS ONE 8(11):e80907

    Article  PubMed Central  PubMed  Google Scholar 

  • Bibost A-L, Kydd E, Brown C (2013) The effect of sex and early environment on the lateralization of the rainbowfish Melanotaenia duboulayi. In: Csermely D, Regolin L (eds) Behavioral Lateralization in Vertebrates. Springer, Heidelberg, pp 9–24

    Chapter  Google Scholar 

  • Bisazza A, Dadda M (2005) Enhanced schooling performance in lateralized fishes. Proc R Soc Lon B 272:1677–1681

    Article  Google Scholar 

  • Bisazza A, Cantalupo C, Vallortigara G (1997) Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiol Behav 61:31–35

    Article  CAS  PubMed  Google Scholar 

  • Bisazza A, Cantalupo C, Capocchiano M, Vallortigara G (2000) Population lateralization and social behaviour: a study with 16 species of fish. Laterality 5:269–284

    Article  CAS  PubMed  Google Scholar 

  • Broglio C, Rodriguez F, Salas C (2003) Spatial cognition and its neural basis in teleost fishes. Fish Fish 4:247–255

    Article  Google Scholar 

  • Brown C (2001) Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim Cogn 4(2):109–113

    Google Scholar 

  • Brown C, Braithwaite VA (2005) Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav Ecol 16:482–497

    Article  Google Scholar 

  • Brown C, Day R (2002) The future of stock enhancements: bridging the gap between hatchery practice and conservation biology. Fish Fish 3:79–94

    Article  Google Scholar 

  • Brown C, Laland K (2001) Social learning and life skills training for hatchery reared fish. J Fish Biol 59:471–493

    Article  Google Scholar 

  • Brown C, Magat M (2011) The evolution of lateralized foot use in parrots: a phylogenetic approach. Behav Ecol 22:1201–1208

    Article  Google Scholar 

  • Brown C, Warburton K (1997) Predator recognition and anti-predator responses in the rainbowfish Melanotaenia eachamensis. Behav Ecol Sociobiol 41:61–68

    Article  Google Scholar 

  • Brown C, Davidson T, Laland K (2003) Environmental enrichment and prior experience of live prey improve foraging behaviour in hatchery-reared Atlantic salmon. J Fish Biol 63:187–196

    Article  Google Scholar 

  • Brown C, Gardner C, Braithwaite VA (2004) Population variation in lateralised eye use in the poeciliid Brachyraphis episcopi. Proc R Soc Lon B 271:S455–S457

    Article  Google Scholar 

  • Brown C, Western J, Braithwaite VA (2007) The influence of early experience on, and inheritance of, cerebral lateralization. Anim Behav 74:231–238

    Article  Google Scholar 

  • Brydges NM, Colegrave N, Heathcote RJP, Braithwaite VA (2008) Habitat stability and predation pressure affect temperament behaviours in populations of three-spined sticklebacks. J Anim Ecol 77:229–235

    Article  PubMed  Google Scholar 

  • Castellano MA, Diaz-Palarea MD, Rodriguez M, Barroso J (1987) Lateralization in male rats and dopaminergic system: evidence of right-side population bias. Physiol Behav 40:607–612

    Article  CAS  PubMed  Google Scholar 

  • Dadda M, Bisazza A (2006) Does brain asymmetry allow efficient performance of simultaneous tasks? Anim Behav 72:523–529

    Article  Google Scholar 

  • Dadda M, Bisazza A (2012) Prenatal light exposure affects development of behavioural lateralization in a livebearing fish. Behav Process 91:115–118

    Article  Google Scholar 

  • Dadda M, Zandonà E, Agrillo C, Bisazza A (2009) The costs of hemispheric specialization in a fish. Proc R Soc Lon B 276:4399–4407

    Article  Google Scholar 

  • Diamond MC, Johnson RE, Young D, Singh SS (1983) Age-related morphologic differences in the rat cerebral cortex and hippocampus: male-female; right–left. Exp Neurol 81:1–13

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kurashima R, Gokan H, Inoue N, Ito I, Watanabe S (2010) Left–right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in mice. PLoS ONE 5:e15468

    Article  PubMed Central  PubMed  Google Scholar 

  • Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci. doi:10.1073/pnas.1302581110

    PubMed Central  PubMed  Google Scholar 

  • Griffiths SW (1996) Sex differences in the trade-off between feeding and mating in the guppy. J Fish Biol 48:891–898

    Article  Google Scholar 

  • Güntürkün O, Diekamp B, Manns M, Nottelmann F, Prior H, Schwarz A et al (2000) Asymmetry pays: visual lateralization improves discrimination success in pigeons. Curr Biol 10:1079–1081

    Article  PubMed  Google Scholar 

  • Guttridge T, Brown C (2013) Learning and memory in the Port Jackson shark, Heterodontus portusjacksoni. Anim Cogn. doi:10.1007/s10071-013-0673-4

  • Huber R, van Staaden MJ, Kaufman LS, Liem KF (1997) Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids. Brain Behav Evol 50:167–182

    Article  CAS  PubMed  Google Scholar 

  • Huntingford FA (2004) Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J Fish Biol 65:122–142

    Article  Google Scholar 

  • Jacobs LF, Gaulin SJ, Sherry DF, Hoffman GE (1990) Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Natl Acad Sci 87:6349–6352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanit L, Koylu EO, Erdogan O, Pogun S (2005) Effects of laterality and sex on cognitive strategy in a water maze place learning task and modification by nicotine and nitric oxide synthase inhibition in rats. Brain Res Bull 66:189–202

    Article  CAS  PubMed  Google Scholar 

  • Kotrschal K, Van Staaden M, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408

    Article  Google Scholar 

  • Kydd E, Brown C (2009) Loss of shoaling preference for familiar individuals in captive-reared crimson spotted rainbowfish Melanotaenia duboulayi. J Fish Biol 74:2187–2195

    Article  CAS  PubMed  Google Scholar 

  • Mackney PA, Hughes RN (1995) Foraging behaviour and memory window in sticklebacks. Behaviour 132:1241–1253

    Article  Google Scholar 

  • Magat M, Brown C (2009) Laterality enhances cognition in Australian parrots. Proc R Soc Lon B 276:4155–4162

    Article  Google Scholar 

  • McGrew WC, Marchant LF (1999) Laterality of hand use pays off in foraging success for wild chimpanzees. Primates 40:509–513

    Article  Google Scholar 

  • Nilsson J, Kristiansen T, Fosseidengen J, Fernö A, van den Bos R (2008) Learning in cod (Gadus morhua): long trace interval retention. Anim Cogn 11:215–222

    Article  PubMed  Google Scholar 

  • Pascual A, Huang K-L, Neveu J, Preat T (2004) Neuroanatomy: brain asymmetry and long-term memory. Nature 427:605–606

    Article  CAS  PubMed  Google Scholar 

  • Reddon AR, Hurd PL (2008) Aggression, sex and individual differences in cerebral lateralization in a cichlid fish. Biol Lett 4:338–340

    Article  PubMed Central  PubMed  Google Scholar 

  • Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253

    Article  CAS  PubMed  Google Scholar 

  • Rogers LJ (2002) Lateralization in vertebrates: its early evolution, general pattern, and development. Adv Study Behav 31:107–161

    Article  Google Scholar 

  • Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, UK

  • Rogers LJ, Zucca P, Vallortigara G (2004) Advantages of having a lateralized brain. Proc R Soc Lon B 271:S420–S422

    Article  Google Scholar 

  • Salvanes AGV, Moberg O, Ebbesson LOE, Nilsen TO, Jensen KH, Braithwaite VA (2013) Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proc R Soc Lon B. doi:10.1098/rspb.2013.1331

    Google Scholar 

  • Sandoz J-C, Menzel R (2001) Side-specificity of olfactory learning in the honeybee: generalization between odors and sides. Learn Mem 8:286–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sovrano VA, Dadda M, Bisazza A (2005) Lateralized fish perform better than nonlateralized fish in spatial reorientation tasks. Behav Brain Res 163:122–127

    Article  PubMed  Google Scholar 

  • Tabibnia G, Cooke BM, Breedlove SM (1999) Sex difference and laterality in the volume of mouse dentate gyrus granule cell layer. Brain Res 827:41–45

    CAS  PubMed  Google Scholar 

  • Tappin AR (2010) Rainbowfish: their care and keeping in captivity. Art publications. http://peter.unmack.net/tappin/Rainbowfishes.2011.pdf

  • Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang 73:189–219

    Article  CAS  PubMed  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633

    PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Samuel Brown and Brianne Messer for their assistance in the experimental observation. We also thank Mariella Herberstein and Darrell Kemp for helpful comments on the manuscript. This project was funded by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Culum Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibost, AL., Brown, C. Laterality influences cognitive performance in rainbowfish Melanotaenia duboulayi . Anim Cogn 17, 1045–1051 (2014). https://doi.org/10.1007/s10071-014-0734-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-014-0734-3

Keywords

Navigation