Skip to main content

An Introduction to Biodiversity and Chemotaxonomy

  • Chapter
  • First Online:
Biodiversity and Chemotaxonomy

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

Abstract

About 10–25% species of total over 400,000 species present on the planet Earth are used for human welfare. Plants and their habitats are destroyed for human benefits, and thus, valuable diversity is lost without understanding the utility. Tropical and subtropical agroclimatic conditions support the rich biodiversity of plants which decline towards poles. Plant diversity, genetic make-up and chemical present in them need to be evaluated and identified for proper use. Classical methods are inadequate to clearly classify the plant species, and new and modern tools are always applied for their classification from cytogenetics, molecular fingerprinting to DNA barcoding. Secondary metabolites as chemical markers (alkaloids, flavonoids, terpenes and others) are added tools in this process of identification and help in preventing adulteration and collection and planning of cultivation of desired plant material for industrial use. In this brief overview, problems associated with biodiversity and use of modern tools to resolve these issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed R, Wang YH, Ali Z, Smillie TJ, Khan IA (2016) HPLC method for chemical fingerprinting of Guggul (Commiphora wightii)–quantification of E-and Z-guggulsterones and detection of possible adulterants. Planta Medica 82(4):356–361. https://doi.org/10.1055/s-0035-1558211

    Article  CAS  PubMed  Google Scholar 

  • Bell EA, Charlwood BV (1980) Secondary plant products. Springer, Heidelberg

    Book  Google Scholar 

  • Ceccarelli S (2009) Evolution, plant breeding and biodiversity. J Agric Environ Inter Dev 103(1/2):131–145

    Google Scholar 

  • Chapman AD (2009) Numbers of living species in australia and the world, 2nd edn. Australian Government, Department of the Environment, Water, Heritage and the Arts. Canberra, Australia

    Google Scholar 

  • Chitale VS, Behera MD, Roy PS (2015) Global biodiversity hotspots in India: significant yet under studied. Curr Sci 108:149

    Google Scholar 

  • Conn EE (1981) Secondary plant products. The biochemistry of plants, vol. 7. Academic Press, New York

    Google Scholar 

  • Cunningham AB, Brinckmann JA, Kulloli RN, Schippmann U (2018) Rising trade, declining stocks: the global gugul (Commiphora wightii) trade. J Ethnopharmacol 223:22–32

    Article  CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products, a biosynthetic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • DNP (1996) Dictionary of natural products. CD-ROM Version 5:1. Chapman and Hall London

    Google Scholar 

  • Elzinga S, Fischedick J, Podkolinski R, Raber JC (2015) Cannabinoids and terpenes as chemotaxonomic markers in cannabis. Nat Prod Chem Res 3:181. https://doi.org/10.4172/2329-6836.1000181

    Article  CAS  Google Scholar 

  • Forest F, Grenyer R, Rouget M, Davies J, Cowling RM, Faith DP et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  CAS  Google Scholar 

  • Ganzera M, Choudhary MI, Khan A (2003) Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia 74(1–2):68–76

    Article  CAS  Google Scholar 

  • Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB et al (2012) Biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge University Press, Cambridge, p 606

    Book  Google Scholar 

  • Goyal S, Ramawat KG (2019) Co-evolution of secondary metabolites during biological competition for survival and superiority: An overview. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Reference Series in Phytochemistry Springer, Cham

    Google Scholar 

  • Goyal S, Ramawat KG, Mérillon JM (2017) Different shades of fungal metabolites: an overview. In: Mérillon JM, Ramawat KG (eds) Fungal Metabolites. Reference Series in Phytochemistry Springer, Cham

    Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, London

    Google Scholar 

  • Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859

    Article  Google Scholar 

  • Hubert N, Hanner R (2015) DNA barcoding, species delineation and taxonomy: a historical perspective. DNA Barcodes 3:44–58

    Google Scholar 

  • Jian C, Deyi Q, Qiaoyun Y et al (2014) A successful case of DNA barcoding used in an international trade dispute. DNA Barcodes 2(1):21–28

    Article  Google Scholar 

  • Juma C (2018) Moving beyond the green revolution in Africa’s new era of hunger. African J Food Agric Nutr. https://theconversation.com/moving-beyond-the-green-revolution-in-africas-new-era-of-hunger-87310

  • Kajikawa M, Sierro N, Hashimoto T, Shoji T (2017) A model for evolution and regulation of nicotine biosynthesis regulon in tobacco. Plant Signaling Behav 12:6. https://doi.org/10.1080/15592324.2017.1338225

    Article  CAS  Google Scholar 

  • Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL (2009) Probing evolutionary patterns in neotropical birds through DNA barcodes. PloS One 4:e4379

    Article  Google Scholar 

  • Komarek A, Beutel RG (2006) Problems in taxonomy and suggestions for a standardized description of new insect taxa. Entomol Probl 36(2):55–70

    Google Scholar 

  • de Lange O, Klavins E, Nemhauser J (2018) Synthetic genetic circuits in crop plants. Curr Opin Biotechnol 49:16–22

    Article  Google Scholar 

  • Lopez M, Blazquez MA (2016) Characterization of the essential oils from commercial chamomile flowers and chamomile teabags by GC-MS analysis. Int J Pharmacogn Phytochem Res 8(9):1487–1491

    Google Scholar 

  • Mahadani P, Ghosh SK (2013) DNA barcoding: a tool for species identification from herbal juices. DNA Barcodes 35–38. https://doi.org/10.2478/dna-2013-0002

  • Merillon JM, Ramawat KG (eds) (2017a) Fungal metabolites. Springer International Publishing, Switzerland, pp 1001

    Google Scholar 

  • Merillon JM, Ramawat KG (eds) (2017b) Glucosinolates. Springer International Publishing, Switzerland, pp 473

    Google Scholar 

  • Miller SE (2007) DNA barcoding and the renaissance of taxonomy. Proc Nat Acad Sci USA 104:4775–4776

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversityhotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Nobukazu S, Hayashida M, Yazaki K (2016) Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotech Biochem 80(7):1283–1293

    Article  Google Scholar 

  • Osbourn L (2018) https://www.currentresults.com/Environment-Facts/Plants-Animals/estimate-of-worlds-total-number-of-species.php

  • Osorio CE, Amiard VSE, Aravena-Calvo J et al (2018) Chromatographic fingerprinting of Lupinusluteus L. (Leguminosae) main secondary metabolites: a case of domestication affecting crop variability. Genet Resour Crop Evol 65:1281. https://doi.org/10.1007/s10722-018-0613-x

    Article  CAS  Google Scholar 

  • Page RDM (2016) DNA barcoding and taxonomy: dark taxa and dark texts. Phil Trans R Soc B 371:20150334. https://doi.org/10.1098/rstb.2015.0334

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Ribeiro E, Thomas G (2017) Fire and plant diversity at the global scale. Global Ecol Biogeogr 26(8):889–897. https://doi.org/10.1111/geb.12596

    Article  Google Scholar 

  • Polturak G, Aharoni A (2018) “La Vie en Rose”: biosynthesis, sources, and applications of betalain pigments. Mol Plant Cell 11(1):7–22

    Article  CAS  Google Scholar 

  • Ramadan MF (2017) Underutilized plant species and agricultural sustainability in Egypt. In: The handbook of environmental chemistry. Springer, Berlin, Heidelberg, pp 1–24. https://doi.org/10.1007/698_2017_195

    Google Scholar 

  • Ramawat KG (2007) Production of alkaloids. In: Ramawat KG, Mérillon JM (eds) Biotechnology secondary metabolites: plants and microbes, 2nd edn. Sci Pub Enfield, USA, pp 179–207

    Chapter  Google Scholar 

  • Ramawat KG, Mérillon JM (2013) (eds) Natural products. Springer, Berlin, Heidelberg

    Google Scholar 

  • Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecological functions and medical applications. Plenum, New York

    Book  Google Scholar 

  • Rozan P, Kuo YH, Lambein F (2001) Amino acids in seeds and seedlings of the genus Lens. Phytochem 58:281–289

    Article  CAS  Google Scholar 

  • Schluter D, Pennell MW (2017) Speciation gradients and the distribution of biodiversity. Nature 546:48–55

    Article  CAS  Google Scholar 

  • Sharma V, Ramawat KG (2013) Isoflavonoids. In: Ramawat KG, Mérillon JM (eds) Natural products. Springer, Berlin, Heidelberg, pp 1849–1865

    Chapter  Google Scholar 

  • Shukla PK, Misra A, Kumar M et al (2017) Simultaneous quantification of forskolin and iso-forskolin in Coleus forskohlii (Wild.) Briq. and identification of elite chemotype, collected from Eastern Ghats (India). Pharmacogn Mag 13(Suppl 4):S881–S885. https://doi.org/10.4103/pm.pm_202_17

  • Singh R (2016) Chemotaxonomy: a tool for plant classification. JMPS 4(2):90–93

    Google Scholar 

  • Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (diptera, tachinidae) are not all generalists. Proc Nat Acad Sci USA 104:4967–4972

    Article  CAS  Google Scholar 

  • Sotero-Caio CG, Platt RN, Suh A, Ray DA (2017) Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol Evol 9(1):161–177. https://doi.org/10.1093/gbe/evw264

    Article  CAS  Google Scholar 

  • Talapatra SK, Talapatra B (2015) Quinine. Cinchona Alkaloids (Tryptophan Derived Quinoline Alkaloids). In: Chemistry of plant natural products. Springer, Berlin, Heidelberg

    Google Scholar 

  • Tayjanov K, Mamadalieva NZ, Wink M (2017) Diversity of the mountain flora of Central Asia with emphasis on alkaloid-producing plants. Diversity 9:11. https://doi.org/10.3390/d9010011

    Article  CAS  Google Scholar 

  • Vernooy R, Haribabu E, Muller MR, Vogel JH, Hebert PDN, Schindel DE et al (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biol 8:e1000417

    Article  Google Scholar 

  • Vigouroux Y, Barnaud A, Scarclli N, Thuillet AC (2011) Biodiversity, evolution and adaptation of cultivated crops. Comp Rend Biol 334:450–457. https://doi.org/10.1016/j.crvi.2011.03.003

    Article  Google Scholar 

  • Wink M, Botschen F, Gosmann C, Schäfer H, Waterman PG (2010) Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In: Wink M (ed) Biochemistry of plant secondary metabolism. Wiley-Blackwell, Oxford. Ann Plant Rev 40

    Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3:1205–1216

    CAS  Google Scholar 

  • Wink M (2010a) Functions and biotechnology of plant secondary metabolites. Wiley-Blackwell, Oxford. Ann Plant Rev 39

    Google Scholar 

  • Wink M (2010b) Biochemistry of plant secondary metabolism. Wiley-Blackwell, Oxford. Ann Plant Rev 40

    Google Scholar 

  • Wong EHK, Hanner RH (2008) DNA barcoding detects market substitution in north American seafood. Food Resour Int 41:828–837

    Article  CAS  Google Scholar 

  • Wybouw N, Dermauw W, Tirry L, Stevens C, GrbićM, Feyereisen R, Leeuwen TV (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 3:e02365. https://doi.org/10.7554/elife.02365

  • Zhu X, Zeng X, Sun C et al (2014) Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med 8:285. https://doi.org/10.1007/s11684-014-0350-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishan Gopal Ramawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramawat, K.G. (2019). An Introduction to Biodiversity and Chemotaxonomy. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_1

Download citation

Publish with us

Policies and ethics