Skip to main content

Decomposition and Consumption Tablets (DECOTABs)

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Estimates of decomposition and consumption rates of plant litter generally rely on the incubation of a known quantity of leaves. However, the chemical composition of natural plant material is highly variable among species and biogeographic regions, and cannot be easily manipulated for experimental purposes. This chapter describes a method to overcome these constraints using decomposition and consumption tablets (DECOTABs). DECOTABs are easy-to-prepare agar-based pellets (agar 25% dry mass) with the remaining 75% being organic matter (OM) at choice. In the standard DECOTAB, the 75% OM consists entirely of cellulose powder. For specific DECOTABs, part or all of the cellulose can be replaced to vary OM composition, for example, by adding particulate organic matter, ground plant litter or specific substances such as polyunsaturated fatty acids (PUFAs). This makes the DECOTABs highly standardized, inexpensive and adjustable, enabling extensive manipulation of chemical composition. Proposed only recently, DECOTABs have already provided insight into the importance of environmental conditions, detritivore community composition and litter quality in controlling decomposition and consumption rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bjelke, U. (2005). Processing of leaf matter by lake-dwelling shredders at low oxygen concentrations. Hydrobiologia, 539, 93–98.

    Article  Google Scholar 

  • Boulton, A. J., & Boon, P. I. (1991). A review of methodology used to measure leaf litter decomposition in lotic environments: Time to turn over an old leaf? Marine and Freshwater Research, 42, 1–43.

    Article  CAS  Google Scholar 

  • Dang, C. K., Schindler, M., Chauvet, E., & Gessner, M. O. (2009). Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology, 90, 122–131.

    Article  Google Scholar 

  • Danger, M., Arce Funck, J., Devin, S., Heberle, J., & Felten, V. (2013). Phosphorus content in detritus controls life-history traits of a detritivore. Functional Ecology, 27, 807–815.

    Article  Google Scholar 

  • Gessner, M. O. (1991). Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshwater Biology, 26, 387–398.

    Article  CAS  Google Scholar 

  • González, J. M., & Graça, M. A. S. (2003). Conversion of leaf litter to secondary production by a shredding caddis-fly. Freshwater Biology, 48, 1578–1592.

    Article  Google Scholar 

  • Graça, M. A. S., & Poquet, J. M. (2014). Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia, 174, 1021–1032.

    Article  Google Scholar 

  • Hines, J., Reyes, M., Mozder, T. J., & Gessner, M. O. (2014). Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration. Global Change Biology, 20, 3780–3789.

    Article  Google Scholar 

  • Hunting, E. R., Vonk, J. A., Musters, C. J. M., Kraak, M. H. S., & Vijver, M. G. (2016). Effects of agricultural practices on organic matter degradation in ditches. Scientific Reports, 6, 21474.

    Article  CAS  Google Scholar 

  • Kampfraath, A. A., Hunting, E. R., Mulder, C., Breure, A. M., Gessner, M. O., Kraak, M. H. S., & Admiraal, W. (2012). DECOTAB: A multipurpose standard substrate to assess effects of litter quality on microbial decomposition and invertebrate consumption. Freshwater Science, 31, 1156–1162.

    Article  Google Scholar 

  • Lecerf, A., & Chauvet, E. (2008). Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology, 9, 598–605.

    Article  Google Scholar 

  • LeRoy, C. J., Whitham, T. G., Keim, P., & Marks, J. C. (2006). Plant genes link forests and streams. Ecology, 87, 255–261.

    Article  Google Scholar 

  • Pedersen, J. C. (1992). Natamycin as a fungicide in agar media. Applied and Environmental Microbiology, 58, 1064–1066.

    Article  CAS  Google Scholar 

  • Rader, R. B., McArthur, J. V., & Aho, J. M. (1994). Relative importance of mechanisms determining decomposition in a southeastern blackwater stream. American Midland Naturalist, 132, 19–31.

    Article  Google Scholar 

  • Sariyildiz, T., & Anderson, J. M. (2003). Decomposition of sun and shade leaves from three deciduous tree species, as affected by their chemical composition. Biology and Fertility of Soils, 37, 137–146.

    Article  CAS  Google Scholar 

  • Suberkropp, K., Godshalk, G. L., & Klug, M. J. (1976). Changes in the chemical composition of leaves during processing in a woodland stream. Ecology, 57, 720–727.

    Article  CAS  Google Scholar 

  • Swan, C. M., & Palmer, M. A. (2006). Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia, 147, 469–478.

    Article  Google Scholar 

  • Talbot, J. M., & Treseder, K. K. (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology, 93, 345–354.

    Article  Google Scholar 

  • Tiegs, S. D., Langhans, S. D., Tockner, K., & Gessner, M. O. (2007). Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. Journal of the North American Benthological Society, 26, 70–77.

    Article  Google Scholar 

  • Van der Lee, G. H., Kraak, M. H. S., Verdonschot, R. C. M., Vonk, A. J., & Verdonschot, P. F. M. (2017). Oxygen drives benthic-pelagic decomposition pathways in shallow wetlands. Scientific Reports, 7, 15051.

    Article  Google Scholar 

  • Van Ginneken, V. J. T., Helsper, J. P. F. G., De Visser, W., Van Keulen, H., & Brandenburg, W. A. (2011). Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids in Health and Disease, 10, 104.

    Article  Google Scholar 

  • Vonk, J. A., Van Kuijk, B. F., Van Beusekom, M., Hunting, E. R., & Kraak, M. H. S. (2016). The significance of linoleic acid in food sources for detritivorous benthic invertebrates. Scientific Reports, 6, 35785.

    Article  CAS  Google Scholar 

  • Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17, 567–594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gea H. Van der Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van der Lee, G.H., Hunting, E.R., Vonk, J.A., Kraak, M.H.S. (2020). Decomposition and Consumption Tablets (DECOTABs). In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_57

Download citation

Publish with us

Policies and ethics