Skip to main content

Forward and Inverse Modeling of Large Loop TEM Data Over Multi-layer Earth Models

  • Chapter
  • First Online:
Advances in Modeling and Interpretation in Near Surface Geophysics

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The Transient electromagnetic method (TEM) represents a class of relatively new electromagnetic (EM) methods, which are widely being used for ground water, mineral exploration and environmental and geotechnical problems. The present work describes a forward computation and an inversion schemes for the interpretation of large loop transient electromagnetic (TEM) data acquired using central loop, in-loop and offset-loop configurations over multi-layer earth models, which are still useful for getting an initial guess about the subsurface resistivity and are used as initial model for advanced inversion schemes. The inversion program makes use of non-linear least square approach to generate a smooth inverted model from the data on the basis of criteria of minimization of misfit function and/or convergence of residual in two successive iterations. The forward problem is first formulated in frequency domain, and then Fourier cosine or sine transform is used to transform it into the time domain. The accuracy and robustness of algorithms are tested by computing the forward TEM response and inverting the large loop TEM data acquired using central loop, in-loop and offset loop configurations with or without the addition of random noises over homogeneous, two layer, three layer and four layer earth models. Both the forward and inverse programs work satisfactorily for the TEM response of a large loop source over layered earth models. The programs in their present forms are meant for computation and inversion of voltage response data, but have option for forward computation and inversion of apparent resistivity data with small changes in constraints of the program and input parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abubakar A, vanden Berg PM (2004) Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects. J Comput Phys 195(1):236–262

    Article  Google Scholar 

  • Alumbaugh DL, Newman GA (1997) Three-dimensional massively parallel electromagnetic inversion—II. Analysis of a crosswell electromagnetic experiment. Geophys J Int 128:355363. https://doi.org/10.1111/j.1365-246X.1997.tb01560.x

    Article  Google Scholar 

  • Aminzadeh F (2013) Geophysical applications of artificial neural networks and fuzzy logic, vol 21. Springer Science & Business Media

    Google Scholar 

  • Anderson WL (1979) Numerical integration of related Hankel transform of order 0 and 1 by adaptive digital filtering. Geophysics 44:1287–1305

    Article  Google Scholar 

  • Anderson WL (1982) Nonlinear least square inversion of transient soundings for a central induction loop system (Program NLSTCI), U.S. Geological Survey Open File. Report, pp 82–1129

    Google Scholar 

  • Annan AP (1974) The equivalent source method for electromagnetic scattering analysis and its geophysical application. Doctoral dissertation, Memorial University of New found land)

    Google Scholar 

  • Auken E, Christiansen AV, Kirkegaard C, Fiandaca G, Schamper C, Behroozmand AA, Binley A, Nielsen E, Effers F, Christensen NB, Srensen K (2014) An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data. Explor Geophys 46(3):223–235

    Article  Google Scholar 

  • Avdeev DB (2005) Three-dimensional electromagnetic modelling and inversion from theory to application. Surv Geophys 26(6):767–799

    Article  Google Scholar 

  • Baumgartner F (1996) A new method for geoelectrical investigations underwater. Geophys Prospect 44(1):71–98

    Article  Google Scholar 

  • Buselli G, O’Neill B (1977) SIROTEM: a new portable instrument for multichannel transient electromagnetic measurements. Explor Geophys 8(3):82–87

    Article  Google Scholar 

  • Buselli G, Barber C, Davis GB, Salama RB (1990) Detection of groundwater contamination near waste disposal sites with transient electromagnetic and electrical methods. Geotech Environ Geophys 5:27–39

    Google Scholar 

  • Butler DK (2005) Electromagnetic induction methods for environmental problems. In: Near-surface geophysics, pp 1–6

    Google Scholar 

  • Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice. Cambridge University Press

    Google Scholar 

  • Christensen JH (1997) The Danish Eulerian hemispheric model—a three-dimensional air pollution model used for the Arctic. Atmos Environ 31(24):4169–4191

    Article  Google Scholar 

  • Christensen NB (2014) Sensitivity functions of transient electromagnetic methods. Geophysics 79(4):E167–E182

    Article  Google Scholar 

  • Christensen NB, Srensen KI (1998) Surface and borehole electric and electromagnetic methods for hydrogeological investigations. Eur J Environ Eng Geophys 3(1):75–90

    Google Scholar 

  • Christiansen AV, Christensen NB (2003) A quantitative appraisal of airborne and ground-based transient electromagnetic (TEM) measurements in Denmark. Geophysics 68(2):523–534

    Article  Google Scholar 

  • Christiansen AV, Auken E, Kirkegaard C, Schamper C, Vignoli G (2016) An efficient hybrid scheme for fast and accurate inversion of airborne transient electromagnetic data. Explor Geophys 47(4):323–330

    Article  Google Scholar 

  • Cohen GC (2003) Higher-order numerical methods for transient wave equations

    Google Scholar 

  • Colton D, Monk P (1995) A new approach to detecting leukemia: using computational electromagnetics. IEEE Comput Sci Eng 2(4):46–52

    Article  Google Scholar 

  • Commer M, Hoversten GM, Um ES (2015) Transient-electromagnetic finite-difference time-domain earth modeling over steel infrastructure. Geophysics 80(2):E147–E162

    Article  Google Scholar 

  • Constable S, Srnka LJ (2007) An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72(2):WA3–WA12

    Article  Google Scholar 

  • Danielsen JE, Auken E, Jrgensen F, Sndergaard V, Srensen KI (2003) The application of the transient electromagnetic method in hydrogeophysical surveys. J Appl Geophys 53(4):181–198

    Article  Google Scholar 

  • Dennis JE Jr, Gay DM, Welsch RE (1981) An adaptive nonlinear least squarem algorithm. ACM Trans Math Softw 7:348–368

    Article  Google Scholar 

  • Everett ME (2012) Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surv Geophys 33(1):29–63

    Article  Google Scholar 

  • Expsito AG, Gomez-Exposito A, Conejo AJ, Canizares C (2016) Electric energy systems: analysis and operation. CRC Press

    Google Scholar 

  • Fittermann DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51:995–1005

    Article  Google Scholar 

  • Fountain D (1998) Airborne electromagnetic systems-50 years of development. Explor Geophys 29(1/2):1–11

    Article  Google Scholar 

  • Frischknecht FC (1991) Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys. Q Color Sch Mines 62(1):1–326

    Google Scholar 

  • Frischknecht FC, Raab PV (1984) Time domain electromagnetic soundings at the Nevada test site, Nevada. Geophysics 49:981–992

    Article  Google Scholar 

  • Fullagar PK (1989) Generation of conductivity-depth pseudo-sections from coincident loop and in-loop TEM data. Explor Geophys 20(2):43

    Article  Google Scholar 

  • Goldman M, Mogilatov V, Haroon A, Levi E, Tezkan B (2015) Signal detectability of marine electromagnetic methods in the exploration of resistive targets. Geophys Prospect 63(1):192–210

    Article  Google Scholar 

  • Grant FS, West GF (1965) Interpretation theory. Applied geophysics

    Google Scholar 

  • Gribenko A, Zhdanov MS (2007) Rigorous 3D inversion of marine CSEM data based on the integral equation method. Geophysics 72(2):WA73–WA84. https://doi.org/10.1190/1.2435712

    Article  Google Scholar 

  • Guillemoteau J, Sailhac P, Bhaegel M (2011) Regularization strategy for the layered inversion of airborne transient electromagnetic data: application to in-loop data acquired over the basin of Franceville (Gabon). Geophys Prospect 59(6):1132–1143

    Article  Google Scholar 

  • Haber E, Ascher UM, Oldenburg DW (2004) Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach. Geophysics 69(5):1216–1228

    Article  Google Scholar 

  • Haber E, Oldenburg DW, Shekhtman R (2007) Inversion of time domain three dimensional electromagnetic data. Geophys J Int 171(2):550–564

    Article  Google Scholar 

  • Hadi MF, Piket-May M (1997) A modified FDTD (2, 4) scheme for modeling electrically large structures with high-phase accuracy. IEEE Trans Antennas Propag 45(2):254–264

    Article  Google Scholar 

  • Hammack R, Kaminski V, Harbert W, Veloski G, Lipinski B (2010) Using helicopter electromagnetic (HEM) surveys to identify potential hazards at coal-waste impoundments: examples from West Virginia. Geophysics 75(6):B221–B229

    Article  Google Scholar 

  • Hedlin C, Constable S (1990) Occams inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55(12):1613–1624

    Article  Google Scholar 

  • Hobbs B, Li G, Clarke C, Linfoot J (2005) Inversion of multi-transient electromagnetic data. In: 68th conference & technical exhibition, EAGE, Extended Abstracts, p A015

    Google Scholar 

  • Hoekstra P, Blohm MW (1990) Case histories of time domain electromagnetic soundings in environmental geophysics. Geotech Environ Geophys 2. Environ Groundw Soc Expl Geophys Investig Geophys 5:1–16

    Google Scholar 

  • Hohmann GW (1971) Electromagnetic scattering by conductors in the earth near a line source of current. Geophysics 36(1):101–131

    Article  Google Scholar 

  • Hohmann GW (1975) Three-dimensional induced polarization and electromagnetic modeling. Geophysics 40(2):309–324

    Article  Google Scholar 

  • Hohmann GW (1988) Numerical modeling for electromagnetic methods of geophysics. Electromagn Methods Appl Geophys 1:313–363

    Google Scholar 

  • Hoversten GM, Constable SC, Morrison HF (2000) Marine magnetotellurics for base-of-salt mapping: Gulf of Mexico field test at the Gemini structure. Geophysics 65(5):1476–1488

    Article  Google Scholar 

  • Jrgensen F, Sandersen PB, Auken E (2003) Imaging buried Quaternary valleys using the transient electromagnetic method. J Appl Geophys 53(4):199–213

    Article  Google Scholar 

  • Kaufman AA, Eaton PA (2001) The theory of inductive prospecting. Elsevier Science Publishing Co., Amsterdam

    Google Scholar 

  • Kaufman AA, Keller GV (1983) Frequency and transient soundings

    Google Scholar 

  • Knight JH, Raiche AP (1982) Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method. Geophysics 47:47–50

    Article  Google Scholar 

  • Lamontagne JR, Galasso GJ (1978) Report of a workshop on clinical studies of the efficacy of amantadine and rimantadine against influenza virus. J Infect Dis 138(6):928–931

    Article  Google Scholar 

  • Lee KH, Pridmore DF, Morrison HF (1981) A hybrid three-dimensional electromagnetic modeling scheme. Geophysics 46(5):796–805

    Article  Google Scholar 

  • Lee KH, Liu G, Morrison HF (1989) A new approach to modeling the electromagnetic response of conductive media. Geophysics 54(9):1180–1192

    Article  Google Scholar 

  • Li J, Farquharson CG, Hu X (2016) Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses Inverse Laplace transform algorithms. Geophysics 81(2):E113–E128

    Article  Google Scholar 

  • Lines LR, Schultz AK, Treitel S (1988) Cooperative inversion of geophysical data. Geophysics 53(1):8–20

    Article  Google Scholar 

  • Liu EH, Lamontagne Y (1998) Geophysical application of a new surface integral equation method for EM modeling. Geophysics 63(2):411–423

    Article  Google Scholar 

  • Mackie RL, Madden TR (1993) Three-dimensional magnetotelluric inversion using conjugate gradients. Geophys J Int 115(1):215–229

    Article  Google Scholar 

  • Matsushita S, Campbell WH (eds) (2016) Physics of geomagnetic phenomena: international geophysics series, vol 2. Elsevier

    Google Scholar 

  • McCracken KG, Oristaglio ML, Hohmann GW (1986) Minimization of noise in electromagnetic exploration systems. Geophysics 51(3):819–832

    Article  Google Scholar 

  • McNeill JD (1990) Use of electromagnetic methods for groundwater studies. Geotech Environ Geophys 1(5):191–218

    Article  Google Scholar 

  • McNeill JD (1991) Advances in electromagnetic methods for groundwater studies. Geoexploration 27(1–2):65–80

    Article  Google Scholar 

  • Mitsuhata Y (2000) 2-D electromagnetic modeling by finite-element method with a dipole source and topography. Geophysics 65(2):465–475

    Article  Google Scholar 

  • Moorkamp M (2017) Integrating electromagnetic data with other geophysical observations for enhanced imaging of the earth: a tutorial and review. Surv Geophys 38(5):935–962

    Article  Google Scholar 

  • Moreno P, Abner R (2008) Implementation of the numerical Laplace transform: a review task force on frequency domain methods for EMT studies, working group on modeling and analysis of system transients using digital simulation. Power Eng Soc Trans Power Deliv 23(4):2599–2609

    Article  Google Scholar 

  • Morgan MA (2013) Finite element and finite difference methods in electromagnetic scattering. Elsevier

    Google Scholar 

  • Morrison HF, Phillips RJ, Obrien DP (1969) Quantitative interpretation of transient electromagnetic fields over a layered half space. Geophys Prospect 17(1):82–101

    Article  Google Scholar 

  • Nabighian MN (1970) Quasi-static transient response of a conducting permeable sphere in a dipolar field. Geophysics 35(2):303–309

    Article  Google Scholar 

  • Nabighian MN (1979) Quasi-static transient response of a conducting half-space—an approximate representation. Geophysics 44(10):1700–1705

    Article  Google Scholar 

  • Nabighian MN (1984) Foreword and introduction to special issue of geophysics on time domain electromagnetic methods of exploration. Geophysics 44:1700–1705

    Article  Google Scholar 

  • Nabighian MN, Macnae JC (1991) Time domain electromagnetic prospecting methods. Electromagn Methods Appl Geophys 2(A):427–509

    Google Scholar 

  • Newman GA, Hohmann GW (1988) Transient electromagnetic responses of high-contrast prisms in a layered earth. Geophysics 53(5):691–706

    Article  Google Scholar 

  • Newman GA, Hohmann GW, Anderson WL (1986) Transient electromagnetic response of a three dimensional body in a layered earth. Geophysics 51:1608–1627

    Article  Google Scholar 

  • Newman GA, Anderson WL, Hohmann GW (1987) Interpretation of transient electromagnetic soundings over threedimensional structures for the central-loop configuration. Geophys J Int 89(3):889–914

    Article  Google Scholar 

  • Noh K, Oh S, Seol SJ, Lee KH, Byun J (2016) Analysis of anomalous electrical conductivity and magnetic permeability effects using a frequency domain controlled-source electromagnetic method. Geophys J Int 204(3):1550–1564

    Article  Google Scholar 

  • Obukhov GG (1968) About some properties of the nonstationary electromagnetic fields in the earth and their applications in electrical prospecting. Phys Earth 9:62–71

    Google Scholar 

  • Oldenburg DW, McGillivray PR, Ellis RG (1993) Generalized subspace methods for large-scale inverse problems. Geophys J Int 114(1):12–20

    Article  Google Scholar 

  • Oristaglio ML, Spies BR (1999) Three-dimensional electromagnetics (No. 7). SEG

    Google Scholar 

  • Parry JR (1969) Integral equation formulations of scattering from two-dimensional inhomogeneities in a conductive earth. Ph.D. thesis, University of California, Berkeley

    Google Scholar 

  • Patra HP, Mallick K (1980) Geo-sounding principles 2. Elsevier Science Publication Co.

    Google Scholar 

  • Pellerin L, Johnston JM, Hohmann GW (1996) A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 61(1):121–130

    Article  Google Scholar 

  • Poddar M (1982) A rectangular loop source of current on a two-layered earth. Geophys Prospect 30:101–114

    Article  Google Scholar 

  • Poddar M (1983) A rectangular loop source of current on a multi-layered earth. Geophysics 48:107–109

    Article  Google Scholar 

  • Raiche AP (1974) An integral equation approach to three-dimensional modelling. Geophys J Int 36(2):363–376

    Article  Google Scholar 

  • Raiche A (1994) Modelling and inversion-progress, problems, and challenges. Surv Geophys 15(2):159–207

    Article  Google Scholar 

  • Raiche AP, Jupp D, Rutter H, Vozoff K (1985) The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures. Geophysics 50(10):1618–1627

    Article  Google Scholar 

  • Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2(4):444–475

    Article  Google Scholar 

  • Rubin Y, Hubbard SS (eds) (2006) Hydrogeophysics, vol 50. Springer Science & Business Media

    Google Scholar 

  • Ryu J, Morrison HF, Ward SH (1970) Electromagnetic field about a loop source of current. Geophysics 35:862–896

    Article  Google Scholar 

  • Sasaki Y (2001) Full 3-D inversion of electromagnetic data on PC. J Appl Geophys 46(1):45–54

    Article  Google Scholar 

  • Sen MK, Stoffa PL (2013) Global optimization methods in geophysical inversion. Cambridge University Press

    Google Scholar 

  • Singh NP, Mogi T (2002) Effective skin depth with a local source and its application to survey design and data interpretation. SEG Annual Meeting, Society of Exploration Geophysicists

    Google Scholar 

  • Singh NP, Mogi T (2003) Inversion of large loop transient electromagnetic data over layered earth models. Geophysics 12(1):41–54

    Google Scholar 

  • Singh NP, Mogi T (2005) Electromagnetic response of a large circular loop source on a layered earth: a new computation method. Pure Appl Geophys 162:181200

    Article  Google Scholar 

  • Singh NP, Mogi T (2010) EMDPLER: a F77 program for modeling the EM response of dipolar sources over the nonmagnetic layer earth models. Comput Geosci 36:430440

    Article  Google Scholar 

  • Singh NP, Utsugi M, Kagiyama T (2009) TEM response of a large loop source over a homogeneous earth model: a generalized expression for arbitrary source-receiver offsets. Pure appl Geophys 166(12):20–37

    Article  Google Scholar 

  • Spichak VV (2015) Electromagnetic sounding of the Earth’s interior, vol 40. Elsevier

    Google Scholar 

  • Spies BR, Frischknecht FC (1991) Electromagnetic sounding. Electromagn Methods Appl Geophys 2(A):285–426

    Google Scholar 

  • Strack KM (1992) Exploration with deep transient electromagnetics, vol 373. Elsevier, Amsterdam

    Google Scholar 

  • Strack KM, Vozoff K (1996) Integrating long offset transient electromagnetics (LOTEM) with seismics in an exploration environment. Geophys Prospect 44(6):997–1017

    Article  Google Scholar 

  • Strack KM, Hanstein T, LeBrocq K, Moss DC, Vozoff K, Wolfgram PA (1989) Case histories of LOTEM surveys in hydrocarbon prospective area. First Break 7(12):467–477

    Google Scholar 

  • Strack KM, Lschen E, Ktz AW (1990) Long-offset transient electromagnetic (LOTEM) depth soundings applied to crustal studies in the Black Forest and Swabian Alb, Federal Republic of Germany. Geophysics 55(7):834–842

    Article  Google Scholar 

  • Streich R (2009) 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy. Geophysics 74(5):F95–F105

    Article  Google Scholar 

  • Streich R (2016) Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv Geophys 37(1):47–80

    Article  Google Scholar 

  • Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time domain method. Artech house

    Google Scholar 

  • Teixeira FL, Chew WC, Straka M, Oristaglio ML, Wang T (1998) Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Trans Geosci Remote Sens 36(6):1928–1937

    Article  Google Scholar 

  • Torres-Verdin C, Habashy TM (1994) Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation. Radio Sci 29(04):1051–1079

    Article  Google Scholar 

  • Um ES, Harris JM, Alumbaugh DL (2010) 3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach. Geophysics 75(4):F115–F126

    Article  Google Scholar 

  • Vozoff K (1986) Magnetotelluric methods. Soc Expl Geophys Reprint Ser (5)

    Google Scholar 

  • Wang T, Hohmann GW (1993) A finite-difference, time-domain solution for three dimensional electromagnetic modeling. Geophysics 58(6):797–809

    Article  Google Scholar 

  • Wannamaker PE, Hohmann GW, SanFilipo WA (1984) Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations. Geophysics 49(1):60–74

    Article  Google Scholar 

  • Ward SH (1980) Electrical, electromagnetic, and magnetotelluric methods. Geophysics 45(11):1659–1666

    Article  Google Scholar 

  • Ward SH, Hohmann GW (1988) Electromagnetic theory for geophysical applications. Electromagn Methods Appl Geophys (1)

    Google Scholar 

  • Weaver PF, Yuen PC, Prolss GW, Furumoto AS (1970) Acoustic coupling into the ionosphere from seismic waves of the earthquake at Kurile Islands on August 11, 1969. Nature 226(5252):1239

    Article  Google Scholar 

  • Weidelt P (1975) Electromagnetic induction in three-dimensional structures: J Geophys 41(1):85–109

    Google Scholar 

  • Weidelt P (1975b) Inversion of two-dimensional conductivity structures. Phys Earth Planet Inter 10(3):282–291

    Article  Google Scholar 

  • Weiland T (1996) Time domain electromagnetic field computation with finite difference methods. Int J Numer Model Electron Netw Devices Fields 9(4):295–319

    Article  Google Scholar 

  • Wright DA, Ziolkowski AM, Hobbs BA (2005) Detection of subsurface resistivity contrasts with application to location of fluids. U.S. Patent 6,914,433

    Google Scholar 

  • Xiong Z (1992) Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations. Geophysics 57(12):1556–1561

    Article  Google Scholar 

  • Xue Y, Chang L, Kjaer SB, Bordonau J, Shimizu T (2004) Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans Power Electron 19(5):1305–1314

    Article  Google Scholar 

  • Zhang Z, Xiao J (2001) Inversion of surface and borehole data from large-loop transient electromagnetic system over a 1-D earth. Geophysics 66:10901096

    Google Scholar 

  • Zhdanov MS (2009a) Geophysical electromagnetic theory and methods, vol 43. Elsevier

    Google Scholar 

  • Zhdanov MS (2009b) New advances in regularized inversion of gravity and electromagnetic data. Geophys Prospect 57(4):463–478

    Article  Google Scholar 

  • Zhdanov MS (2010) Electromagnetic geophysics: notes from the past and the road ahead. Geophysics 75(5):75A49–75A66

    Article  Google Scholar 

  • Zhdanov MS, Fang S (1996) Quasi-linear approximation in 3-D electromagnetic modeling. Geophysics 61(3):646–665

    Article  Google Scholar 

  • Zhdanov MS, Pavlov DA, Ellis RG (2002) Localized S-inversion of time-domain electromagnetic data. Geophysics 67(4):1115–1125

    Article  Google Scholar 

  • Ziolkowski A, Hobbs BA, Wright D (2007) Multitransient electromagnetic demonstration survey in France. Geophysics 72(4):F197–F209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, S.P., Singh, N.P., Tiwari, A.K. (2020). Forward and Inverse Modeling of Large Loop TEM Data Over Multi-layer Earth Models. In: Biswas, A., Sharma, S. (eds) Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-28909-6_6

Download citation

Publish with us

Policies and ethics