Skip to main content
Log in

Dimensions of polar pathways through rabbit gallbladder epithelium

The effect of phloretin on nonelectrolyte permeability

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The permeability of rabbit gallbladder to hydrophilic nonelectrolytes, with molecular weights from 20 to 60,000, has been studied. Restriction in the diffusion of the small electrolytes is very significant up to glycerol, which suggests permeation through aqueous pores with equivalent radii of 4 Å. An extracellular pathway is responsible for the permeation of the larger solutes. This extracellular pathway shows no restriction in diffusion of molecules up to the size of inulin. Dextran (15,000 to 17,000 mol wt) is significantly restricted. Albumin permeability is <10−8 cm sec−1. These observations can be equated with equivalent, pore radii of ≈40 Å for the shunt pathway.

Increasing osmolarities of the incubation medium cause decreased cell-membrane permeability and increased shunt permeability. 0.5mm phloretin induces a 60% reduction in urea permeability and a 168% increase in antipyrine permeability. No effect on the osmotic water permeability or on the shunt permeability is observed in the presence of phloretin. The apparent activation energy of urea permeation changes from values consistent with diffusion in bulk water, to values consistent with diffusion through hydrocarbon regions. This suggests that the polar route for urea permeation is blocked by phloretin.

The contribution of the shunt pathway to osmotic flow induced by sucrose or NaCl gradients is smaller than 16% according to Poiseuille's flow calculations. Tetraethylammoniumchloride and albumin have been shown to be osmotically more effective than sucrose, suggesting a greater shunt contribution to the total water flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altamirano, M., Martinoya, C. 1966. The permeability of the gastric mucosa of dog.J. Physiol. 184:771

    Google Scholar 

  2. Barry, P. H., Diamond, J. M., Wright, E. M. 1971. The mechanism of cation permeation in rabbit gallbladder. Dilution potential and biionic potentialsJ. Membrane Biol. 4:358

    Google Scholar 

  3. Beck, R. E., Schultz, J. S. 1972. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry.Biochim. Biophys. Acta 255:273

    PubMed  Google Scholar 

  4. Bentzel, C. J. 1972. Proximale tubule structure-function relationships during volume expansion inNecturus.Kidney International 2:324

    PubMed  Google Scholar 

  5. Bentzel, C. J., Davies, M., Scott, W. N., Zatzman, M., Solomon, A. K. 1968. Osmotic volume flow in the proximal tubule ofNecturus kidney.J. Gen. Physiol. 51:517

    PubMed  Google Scholar 

  6. Blum, A. L., Hirschowitz, B. I., Helander, H. F., Sachs, G. 1971. Electrical properties of isolated cells ofNecturus gastric mucosa.Biochim. Biophys. Acta 241:261

    PubMed  Google Scholar 

  7. Boulpaep, E. L. 1967. Ion permeability of the, peritubular and luminal membrane of the renal tubular cell.In: Transport und Function intracellulärer Elektrolyte. F. Krück, editor. p. 98. Urban und Schwarzenberg, München, Germany

    Google Scholar 

  8. Bourdeau, J. E., Carone, F. A., Ganote, C. E. 1972. Serum albumin uptake in isolated perfused renal tubules: Quantitative and electron microscope radioautographic studies in three anatomical segments of the rabbit nephron.J. Cell Biol. 54:382

    Article  PubMed  Google Scholar 

  9. Bray, G. 1960. Simple efficient liquid scintillator for counting aqueous solution in a liquid scintillation counter.Analyt. Biochem. 1:279

    Google Scholar 

  10. Dainty, J., Ginzburg, B. Z. 1964. The permeability of the cell membranes ofNitella translucens tu urea and the effect of high concentrations of sucrose on this permeability.Biochim. Biophys. Acta 79:112

    PubMed  Google Scholar 

  11. De Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N., Van Beek, W. P. 1971. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes.Biochim. Biophys. Acta 233:610

    PubMed  Google Scholar 

  12. Diamond, J. M. 1964. Transport of salt and water in rabbit and guinea pig gallbladder.J. Gen. Physiol. 48:1

    PubMed  Google Scholar 

  13. Diamond, J. M., Wright, E. M. 1969. Molecular forces governing non-electrolyte permeation through cell membranes.Proc. Roy. Soc. (London) B 172:273

    Google Scholar 

  14. DiBona, D. R. 1972. Passive intercellular pathway in amphibian epithelia.Nature, New Biol. 238:179

    Google Scholar 

  15. DiBona, D. R., Civan, M. M. 1973. Pathways for movement of ions and water across toad urinary bladder.J. Membrane Biol. 12:101

    Google Scholar 

  16. Dick, D. A. T. 1959. Osmotic properties of living cells.Int. Rev. Cytol. 8:387

    PubMed  Google Scholar 

  17. Durbin, R. P. 1960. Osmotic flow of water across permeable cellulose membranes.J. Gen. Physiol. 44:315

    PubMed  Google Scholar 

  18. Elsbach, P., Pettis, P. 1972. A connective tissue membrane as a molecular sieve.Biochim. Biophys. Acta 255:149

    PubMed  Google Scholar 

  19. Erlij, D., Martinez-Palomo, A. 1972. Opening of tight junctions in frog skin by hypertonic urea solutions.J. Membrane Biol. 9:229

    Google Scholar 

  20. Franki, N., Levine, S., Hays, R. M. 1972. Evidence that vasopressin opens independent pathways for water and urea in the cell membrane.Proc. 5th. Int. Congr. Nephrology. p. 78 (abstr.)

  21. Frizzell, R. A., Schultz, S. G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum.J. Gen. Physiol. 59:318

    PubMed  Google Scholar 

  22. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  23. Gertz, K. H. 1963. Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte in proximalen und distalen Konvolut der Rattenniere.Pflüg. Arch. Ges. Physiol. 276:336

    Google Scholar 

  24. Goldstein, D. A., Solomon, A. K. 1960. Determination of equivalent pore radius for human red cells by osmotic pressure measurements.J. Gen. Physiol. 44:1

    PubMed  Google Scholar 

  25. Goodenough, D. A., Revel, J. P. 1970. A fine structural analysis of intercellular junctions in the mouse liver.J. Cell Biol. 45:272

    PubMed  Google Scholar 

  26. Hingson, D. J., Diamond, J. M. 1972. Comparison of nonelectrolyte, permeability patterns in several epithelia.J. Membrane Biol. 10:93

    Google Scholar 

  27. Holtz, R., Finkelstein, A. 1970. The water and non-electrolyte permeability induced in thin lipid membranes by the polyene antibiotics Nystatin and Amphotericin B.J. Gen. Physiol. 56:125

    Article  PubMed  Google Scholar 

  28. International Critical Tables, 1929. Vol. V, p. 63. McGraw-Hill, New York

  29. Jonsson, O. 1971. Effect of variations in the extracellular osmolarity on the permeability to nonelectrolytes of vascular smooth muscle.Acta Physiol. Scand. 81:528

    PubMed  Google Scholar 

  30. Kedem, O., Katchalsky, A. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability.J. Gen. Physiol. 45:143

    PubMed  Google Scholar 

  31. Laurent, T. C., Öbrink, B. 1972. On the restriction of rotational diffusion of proteins in polymer networks.Europ. J. Biochem. 28:94

    PubMed  Google Scholar 

  32. Lieb, W. R., Stein, W. D. 1971. Implications of two different types of diffusion for biological membranes.Nature, New Biol. 234:220

    Google Scholar 

  33. Loehry, C. A., Axon, A. T. R., Hilton, P. J., Hider, R. C., Creamer, B. 1970. Permeability of the small intestine to substance of different molecular weight.Gut 11:466

    PubMed  Google Scholar 

  34. Longsworth, L. G. 1953. Diffusion measurements, at 25°C, of aqueous solutions of amino acids, peptides and sugars.J. Clin. Chem. Soc. 75:5705

    Google Scholar 

  35. Longsworth, L. G. 1954. Temperature dependence of diffusion in aqueous solutions.J. Phys. Chem. 58:770

    Google Scholar 

  36. Lyons, P. A., Sandquist, C. L. 1953. A study of the diffusion ofn butyl alcohol in water using the Gouy method.J. Amer. Chem. Soc. 75:3896

    Google Scholar 

  37. Macey, R. I., Farmer, R. E. L. 1970. Inhibition of water and solute permeability in human red cells.Biochim. Biophys. Acta 211:104

    PubMed  Google Scholar 

  38. Mauro, A. 1965. Osmotic flow in a rigid porous membrane.Science 149:867

    PubMed  Google Scholar 

  39. Ogston, A. G., Woods, E. F. 1954. The sedimentation of some fractions of degraded dextran.Trans. Faraday Soc. 50:635

    Google Scholar 

  40. Owen, J. D., Solomon, A. K. 1972. Control of nonelectrolyte permeability in red cells.Biochim. Biophys. Acta 290:414

    PubMed  Google Scholar 

  41. Phelps, C. F. 1965. The physical properties of inulin solutions.Biochem. J. 95:41

    PubMed  Google Scholar 

  42. Preston, B. N. 1972. Diffusion properties of model extracellular systems.Juselius Symp. “Biology of the fibroblast” (Turku)

  43. Renkin, E. M. 1955. Filtration, diffusion and molecular sieving through porous cellulose membranes.J. Gen. Physiol. 38:225

    Google Scholar 

  44. Rich, G. T., Sha'afi, R. I., Romaldez, A., Solomon, A. K. 1968. Effect of osmolarity on the hydraulic permeability coefficient of red cells.J. Gen. Physiol. 52:941

    PubMed  Google Scholar 

  45. Schnermann, J., Agerup, B., Persson, E. 1972. Hydraulic conductivity of proximal tubules in the rat kidney as determined by colloid osmotically induced water fluxes.Pflüg. Arch. Ges. Physiol. 332s:63

    Google Scholar 

  46. Schultz, S. G., Solomon, A. K. 1961. Determination of the effective hydronamic radii of small molecules by viscometry.J. Gen. Physiol. 44:1189

    Article  PubMed  Google Scholar 

  47. Smulders, A. P., Tormey, J. McD., Wright, E. M. 1972. The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder.J. Membrane Biol. 7:164

    Google Scholar 

  48. Smulders, A. P., Wright, E. M. 1971. The magnitude of nonelectrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. 5:297

    Google Scholar 

  49. Soll, A. H. 1967. A new approach to molecular configuration applied to aqueous pore transport.J. Gen. Physiol. 50:2565

    PubMed  Google Scholar 

  50. Stein, W. D. 1967. The movement of molecules across cell membranes. Academic Press Inc., New york-London

    Google Scholar 

  51. Tormey, J. McD., Diamond, J. M. 1967. The ultrastructural route of fluid transport in rabbit gallbladder.J. Gen. Physiol. 50:2032

    Google Scholar 

  52. Ussing, H. H. 1966. Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution.Ann. N. Y. Acad. Sci. 137:543

    PubMed  Google Scholar 

  53. van Os, C. H., Slegers, J. F. G. 1971. Correlation between (Na+−K+)-activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium.Biochim. Biophys. Acta 241:89

    PubMed  Google Scholar 

  54. van Os, C. H., Slegers, J. F. G. 1973. Path of osmotic water flow through rabbit gall bladder epithelium.Biochim. Biophys. Acta 291:197

    PubMed  Google Scholar 

  55. Wand, J. W., Robinson, C. V., Edelman, J. S. J. 1953. Self diffusion and structure of liquid water. III. Measurements of the self diffusion of liquid water with H2, H3 and O18 as tracers.J. Amer. Chem. Soc. 75:466

    Google Scholar 

  56. Wright, E. M., Diamond, J. M. 1969. Patterns of non-electrolyte permeability.Proc. Roy. Soc. (London) B. 172:227

    Google Scholar 

  57. Wright, E. M., Smulders, A. P., Tormey, J. McD. 1972. The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder.J. Membrane Biol. 7:198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Os, C.H., de Jong, M.D. & Slegers, J.F.G. Dimensions of polar pathways through rabbit gallbladder epithelium. J. Membrain Biol. 15, 363–382 (1974). https://doi.org/10.1007/BF01870095

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870095

Keywords

Navigation