Skip to main content

Hypercholesterolemia, Lipid-Lowering Strategies and Microcirculation

  • Chapter
  • First Online:
Microcirculation

Abstract

Hypercholesterolemia is a major risk for cardiovascular disease mainly due to its contribution to the pathogenesis of atherosclerosis in medium-size and large arteries. In addition, accumulating evidence shows a link between the chronic and abnormal increase of cholesterol and adverse effects on the microcirculation, since early stages of atherosclerosis and before any angiographic evidence of epicardial coronary stenosis. Moreover, hypercholesterolemia by compromising microvascular function has been proved to lead to larger infarcts and adverse cardiac remodeling post-myocardial infarction. The diverse responses of the microvasculature to hypercholesterolemia include oxidative stress, impaired endothelial function, enhanced leukocyte- and platelet- endothelial cell adhesion and thrombosis. Over the past years, benefits of lipid-lowering therapies on coronary microcirculation have mostly focused on statins and patients undergoing cardiac intervention providing evidence that statins elicit beneficial effects on microvasculature integrity leading to better functional recovery after myocardial infarction. However, the association of the statin benefits with its lipid-lowering effect still needs to be clarified. This review article addresses existing evidence regarding microvascular alterations related to hypercholesterolemia, the mechanism by which high cholesterol levels induce functional changes in the microvascular bed and, finally comments on the impact of dyslipidemia-induced microvascular dysfunction at the myocardial level and the benefits of current lipid-lowering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramasamy I. Update on the molecular biology of dyslipidemias. Clin Chim Acta. 2016;454:143–85. https://doi.org/10.1016/j.cca.2015.10.033.

    Article  CAS  Google Scholar 

  2. World Health Organization. Rapport sur la Situation Mondiale des Maladies non Transmissibles (Résumé d’Orientation). Geneva: OMS; 2010. https://www.who.int/nmh/publications/ncd_report-summary_fr.pdf.

    Google Scholar 

  3. World Health Organization. Global Health Observatory. Raised Cholesterol: observations trends 2011. 2011. http://www.who.int/gho/ncd/risk_factors/cholesterol_text/en/WHO.

  4. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33:2771–2782b. https://doi.org/10.1093/eurheartj/ehs246.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Pries AR, Habazettl H, Ambrosio G, et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res. 2008;80(2):165–74.

    Article  CAS  PubMed  Google Scholar 

  6. van den Heuvel M, Sorop O, Koopmans S-J, et al. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol. 2012;302:H85–94. https://doi.org/10.1152/ajpheart.00311.2011.

    Article  CAS  PubMed  Google Scholar 

  7. Bender SB, de Beer VJ, Tharp DL, et al. Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise. Basic Res Cardiol. 2016;111:61. https://doi.org/10.1007/s00395-016-0579-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mygind ND, Michelsen MM, Pena A, et al. Coronary microvascular function and myocardial fibrosis in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. J Cardiovasc Magn Reson. 2016;18(1):76. https://doi.org/10.1186/s12968-016-0295-5.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sara JD, Widmer RJ, Matsuzawa Y, et al. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8:1445–53. https://doi.org/10.1016/j.jcin.2015.06.017.

    Article  PubMed  Google Scholar 

  10. Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12:48–62. https://doi.org/10.1038/nrcardio.2014.160.

    Article  PubMed  Google Scholar 

  11. Kuo L, Chilian WM, Davis MJ. Coronary arteriolar myogenic response is independent of endothelium. Circ Res. 1990;66:860–6. https://doi.org/10.1161/01.RES.66.3.860

    Article  CAS  PubMed  Google Scholar 

  12. Quyyumi AA, Dakak N, Andrews NP, et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest. 1995;95:1747–55. https://doi.org/10.1172/JCI117852.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J. 2017;38(7):478–88. https://doi.org/10.1093/eurheartj/ehv760

  14. Lerman A, Holmes DR, Herrmann J, Gersh BJ. Microcirculatory dysfunction in ST-elevation myocardial infarction: cause, consequence, or both? Eur Heart J. 2007;28:788–97. https://doi.org/10.1093/eurheartj/ehl501.

    Article  PubMed  Google Scholar 

  15. Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–32. https://doi.org/10.1016/j.jacc.2010.01.054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Britten MB, Zeiher AM, Schächinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis. 2004;15:259–64. https://doi.org/10.1097/01.mca.0000134590.99841.81.

  17. Lind L, Berglund L, Larsson A, Sundström J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation. 2011;123:1545–51. https://doi.org/10.1161/CIRCULATIONAHA.110.984047.

    Article  PubMed  Google Scholar 

  18. Duncker DJ, Koller A, Merkus D, Canty JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis. 2015;57:409–22. https://doi.org/10.1016/j.pcad.2014.12.002.

    Article  PubMed  Google Scholar 

  19. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35:1101–11. https://doi.org/10.1093/eurheartj/eht513.

    Article  PubMed  Google Scholar 

  20. Rubinshtein R, Yang EH, Rihal CS, et al. Coronary microcirculatory vasodilator function in relation to risk factors among patients without obstructive coronary disease and low to intermediate Framingham score. Eur Heart J. 2010;31:936–42. https://doi.org/10.1093/eurheartj/ehp459.

    Article  PubMed  Google Scholar 

  21. Wang L, Jerosch-Herold M, Jacobs DR, et al. Coronary risk factors and myocardial perfusion in asymptomatic adults. J Am Coll Cardiol. 2006;47:565–72. https://doi.org/10.1016/j.jacc.2005.09.036.

    Article  PubMed  Google Scholar 

  22. Cha MJ, Kim SM, Kim HS, et al. Association of cardiovascular risk factors on myocardial perfusion and fibrosis in asymptomatic individuals: cardiac magnetic resonance study. Acta Radiol. 2018;59:1300–8. https://doi.org/10.1177/0284185118757274.

    Article  PubMed  Google Scholar 

  23. Xiao W, Guo X, Ding X, He M. Serum lipid profiles and dyslipidaemia are associated with retinal microvascular changes in children and adolescents. Sci Rep. 2017;7:44874. https://doi.org/10.1038/srep44874.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yatsuya H, Folsom AR, Wong TY, et al. Retinal microvascular abnormalities and risk of lacunar stroke. Stroke. 2010;41:1349–55. https://doi.org/10.1161/STROKEAHA.110.580837.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Saito K, Kawasaki Y, Nagao Y, Kawasaki R. Retinal arteriolar narrowing is associated with a 4-year risk of incident metabolic syndrome. Nutr Diabetes. 2015;5:e165. https://doi.org/10.1038/nutd.2015.15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The atherosclerosis risk in communities study. JAMA. 2002;287:1153–9. https://doi.org/10.1001/jama.287.9.1153.

  27. Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vascular fractals predict long-term microvascular complications in type 1 diabetes mellitus: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetologia. 2014;57:2215–21. https://doi.org/10.1007/s00125-014-3317-6.

    Article  CAS  PubMed  Google Scholar 

  28. Benitez-Aguirre PZ, Sasongko MB, Craig ME, et al. Retinal vascular geometry predicts incident renal dysfunction in young people with type 1 diabetes. Diabetes Care. 2012;35:599–604. https://doi.org/10.2337/dc11-1177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nägele MP, Barthelmes J, Ludovici V, et al. Retinal microvascular dysfunction in hypercholesterolemia. J Clin Lipidol. 2018;12:1523–1531.e2. https://doi.org/10.1016/j.jacl.2018.07.015.

    Article  PubMed  Google Scholar 

  30. Kenney WL, Cannon JG, Alexander LM. Cutaneous microvascular dysfunction correlates with serum LDL and sLOX-1 receptor concentrations. Microvasc Res. 2013;85:112–7. https://doi.org/10.1016/j.mvr.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  31. van der Zwan LP, Teerlink T, Dekker JM, et al. Circulating oxidized LDL: determinants and association with brachial flow-mediated dilation. J Lipid Res. 2009;50:342–9. https://doi.org/10.1194/jlr.P800030-JLR200.

    Article  CAS  PubMed  Google Scholar 

  32. Yokoyama I, Ohtake T, Momomura S, et al. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation. 1996;94:3232–8. https://doi.org/10.1161/01.cir.94.12.3232.

    Article  CAS  PubMed  Google Scholar 

  33. Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, et al. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol. 2000;36:103–9. https://doi.org/10.1016/s0735-1097(00)00697-5.

    Article  CAS  PubMed  Google Scholar 

  34. Mangiacapra F, De Bruyne B, Peace AJ, et al. High cholesterol levels are associated with coronary microvascular dysfunction. J Cardiovasc Med (Hagerstown). 2012;13:439–42. https://doi.org/10.2459/JCM.0b013e328351725a.

    Article  CAS  Google Scholar 

  35. Behrenbeck TR, McCollough CH, Miller WL, et al. Early changes in myocardial microcirculation in asymptomatic hypercholesterolemic subjects: as detected by perfusion CT. Ann Biomed Eng. 2014;42:515–25. https://doi.org/10.1007/s10439-013-0934-z.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Cromwell WC, Otvos JD, Keyes MJ, et al. LDL particle number and risk of future cardiovascular disease in the Framingham offspring study - implications for LDL management. J Clin Lipidol. 2007;1:583–92. https://doi.org/10.1016/j.jacl.2007.10.001.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Tan HC, Tai ES, Sviridov D, et al. Relationships between cholesterol efflux and high-density lipoprotein particles in patients with type 2 diabetes mellitus. J Clin Lipidol. 2011;5:467–73. https://doi.org/10.1016/j.jacl.2011.06.016.

    Article  PubMed  Google Scholar 

  38. Narang A, Mor-Avi V, Bhave NM, et al. Large high-density lipoprotein particle number is independently associated with microvascular function in patients with well-controlled low-density lipoprotein concentration: a vasodilator stress magnetic resonance perfusion study. J Clin Lipidol. 2016;10:314–22. https://doi.org/10.1016/j.jacl.2015.12.006.

    Article  PubMed  Google Scholar 

  39. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Atherosclerosis. 2016;253:281–344. https://doi.org/10.1016/j.atherosclerosis.2016.08.018.

    Article  CAS  PubMed  Google Scholar 

  40. van Kranenburg M, Magro M, Thiele H, et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging. 2014;7:930–9. https://doi.org/10.1016/j.jcmg.2014.05.010.

    Article  PubMed  Google Scholar 

  41. Hamirani YS, Wong A, Kramer CM, Salerno M. Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2014;7:940–52. https://doi.org/10.1016/j.jcmg.2014.06.012.

    Article  PubMed Central  PubMed  Google Scholar 

  42. de Waha S, Desch S, Eitel I, et al. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J. 2010;31:2660–8. https://doi.org/10.1093/eurheartj/ehq247.

    Article  PubMed  Google Scholar 

  43. Eitel I, de Waha S, Wöhrle J, et al. Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1217–26. https://doi.org/10.1016/j.jacc.2014.06.1194.

    Article  PubMed  Google Scholar 

  44. Rezkalla SH, Kloner RA. Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2008;72:950–7. https://doi.org/10.1002/ccd.21715.

    Article  PubMed  Google Scholar 

  45. Rommel KP, Baum A, Mende M, et al. Prognostic significance and relationship of worst lead residual ST segment elevation with myocardial damage assessed by cardiovascular MRI in myocardial infarction. Heart. 2014;100:1257–63. https://doi.org/10.1136/heartjnl-2013-305462.

    Article  CAS  PubMed  Google Scholar 

  46. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–72. https://doi.org/10.1161/01.cir.97.8.765.

    Article  CAS  PubMed  Google Scholar 

  47. Cenko E, Ricci B, Kedev S, et al. The no-reflow phenomenon in the young and in the elderly. Int J Cardiol. 2016;222:1122–8. https://doi.org/10.1016/j.ijcard.2016.07.209.

    Article  PubMed  Google Scholar 

  48. Dobrzycki S, Kozuch M, Kamiński K, et al. High cholesterol in patients with ECG signs of no-reflow after myocardial infarction. Rocz Akad Med Bialymst. 2003;48:118–22.

    CAS  PubMed  Google Scholar 

  49. Reindl M, Reinstadler SJ, Feistritzer H-J, et al. Relation of low-density lipoprotein cholesterol with microvascular injury and clinical outcome in revascularized ST-elevation myocardial infarction. J Am Heart Assoc. 2017;6(10):e006957. https://doi.org/10.1161/JAHA.117.006957.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation. 1994;89:1530–8. https://doi.org/10.1161/01.cir.89.4.1530.

    Article  CAS  PubMed  Google Scholar 

  51. Scalia R, Appel JZ, Lefer AM. Leukocyte-endothelium interaction during the early stages of hypercholesterolemia in the rabbit: role of P-selectin, ICAM-1, and VCAM-1. Arterioscler Thromb Vasc Biol. 1998;18:1093–100.

    Article  CAS  PubMed  Google Scholar 

  52. Stokes KY. Microvascular responses to hypercholesterolemia: the interactions between innate and adaptive immune responses. Antioxid Redox Signal. 2006;8:1141–51. https://doi.org/10.1089/ars.2006.8.1141.

    Article  CAS  PubMed  Google Scholar 

  53. Acharya NK, Qi X, Goldwaser EL, et al. Retinal pathology is associated with increased blood–retina barrier permeability in a diabetic and hypercholesterolaemic pig model: beneficial effects of the LpPLA2 inhibitor Darapladib. Diabetes Vasc Dis Res. 2017;14:200–13. https://doi.org/10.1177/1479164116683149.

    Article  CAS  Google Scholar 

  54. Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010;17:192–205. https://doi.org/10.1111/j.1549-8719.2009.00015.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Raman KG, Gandley RE, Rohland J, et al. Early hypercholesterolemia contributes to vasomotor dysfunction and injury associated atherogenesis that can be inhibited by nitric oxide. J Vasc Surg. 2011;53:754–63. https://doi.org/10.1016/j.jvs.2010.09.038.

    Article  PubMed  Google Scholar 

  56. Hein TW, Kuo L. LDLs impair vasomotor function of the coronary microcirculation: role of superoxide anions. Circ Res. 1998;83:404–14. https://doi.org/10.1161/01.res.83.4.404.

    Article  CAS  PubMed  Google Scholar 

  57. Stokes KY, Clanton EC, Clements KP, Granger DN. Role of interferon-gamma in hypercholesterolemia-induced leukocyte-endothelial cell adhesion. Circulation. 2003;107:2140–5. https://doi.org/10.1161/01.CIR.0000062687.80186.A0.

    Article  CAS  PubMed  Google Scholar 

  58. Ohara Y, Peterson TE, Sayegh HS, et al. Dietary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation. 1995;92:898–903. https://doi.org/10.1161/01.CIR.92.4.898.

    Article  CAS  PubMed  Google Scholar 

  59. Weber C, Erl W, Weber KS, Weber PC. Effects of oxidized low density lipoprotein, lipid mediators and statins on vascular cell interactions. Clin Chem Lab Med. 1999;37:243–51. https://doi.org/10.1515/CCLM.1999.043.

    Article  CAS  PubMed  Google Scholar 

  60. Holowatz LA, Santhanam L, Webb A, et al. Oral atorvastatin therapy restores cutaneous microvascular function by decreasing arginase activity in hypercholesterolaemic humans. J Physiol. 2011;589:2093–103. https://doi.org/10.1113/jphysiol.2010.203935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Bruning RS, Santhanam L, Stanhewicz AE, et al. Endothelial nitric oxide synthase mediates cutaneous vasodilation during local heating and is attenuated in middle-aged human skin. J Appl Physiol. 2012;112:2019–26. https://doi.org/10.1152/japplphysiol.01354.2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Sorop O, van den Heuvel M, van Ditzhuijzen NS, et al. Coronary microvascular dysfunction after long-term diabetes and hypercholesterolemia. Am J Physiol Heart Circ Physiol. 2016;311:H1339–51. https://doi.org/10.1152/ajpheart.00458.2015.

    Article  PubMed  Google Scholar 

  63. Sorop O, Heinonen I, van Kranenburg M, et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res. 2018;114:954–64. https://doi.org/10.1093/cvr/cvy038.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Nellore K, Harris NR. L-arginine and antineutrophil serum enable venular control of capillary perfusion in hypercholesterolemic rats. Microcirculation. 2002;9:477–85. https://doi.org/10.1038/sj.mn.7800162.

    Article  CAS  PubMed  Google Scholar 

  65. MĂ¼gge A, Elwell JH, Peterson TE, et al. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 1991;69:1293–300. https://doi.org/10.1161/01.res.69.5.1293.

    Article  PubMed  Google Scholar 

  66. Holowatz LA, Kenney WL. Oral atorvastatin therapy increases nitric oxide-dependent cutaneous vasodilation in humans by decreasing ascorbate-sensitive oxidants. Am J Physiol Regul Integr Comp Physiol. 2011;301:R763–8. https://doi.org/10.1152/ajpregu.00220.2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Holowatz LA, Kenney WL. Acute localized administration of tetrahydrobiopterin and chronic systemic atorvastatin treatment restore cutaneous microvascular function in hypercholesterolaemic humans. J Physiol. 2011;589:4787–97. https://doi.org/10.1113/jphysiol.2011.212100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Landmesser U, Hornig B, Drexler H. Endothelial dysfunction in hypercholesterolemia: mechanisms, pathophysiological importance, and therapeutic interventions. Semin Thromb Hemost. 2000;26:529–38. https://doi.org/10.1055/s-2000-13209.

    Article  CAS  PubMed  Google Scholar 

  69. Heaps CL, Tharp DL, Bowles DK. Hypercholesterolemia abolishes voltage-dependent K+ channel contribution to adenosine-mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol. 2005;288:H568–76. https://doi.org/10.1152/ajpheart.00157.2004.

    Article  CAS  PubMed  Google Scholar 

  70. Vitiello L, Spoletini I, Gorini S, et al. Microvascular inflammation in atherosclerosis. IJC Metab Endocr. 2014;3:1–7. https://doi.org/10.1016/j.ijcme.2014.03.002.

    Article  Google Scholar 

  71. Ishikawa M, Stokes KY, Zhang JH, et al. Cerebral microvascular responses to hypercholesterolemia: roles of NADPH oxidase and P-selectin. Circ Res. 2004;94:239–44. https://doi.org/10.1161/01.RES.0000111524.05779.60.

    Article  CAS  PubMed  Google Scholar 

  72. Lubrano V, Balzan S. Roles of LOX-1 in microvascular dysfunction. Microvasc Res. 2016;105:132–40. https://doi.org/10.1016/j.mvr.2016.02.006.

    Article  CAS  PubMed  Google Scholar 

  73. Hozumi H, Russell J, Vital S, Granger DN. IL-6 mediates the intestinal microvascular thrombosis associated with experimental colitis. Inflamm Bowel Dis. 2016;22:560–8. https://doi.org/10.1097/MIB.0000000000000656.

    Article  PubMed  Google Scholar 

  74. Tailor A, Granger DN. Hypercholesterolemia promotes leukocyte-dependent platelet adhesion in murine postcapillary venules. Microcirculation. 2004;11:597–603. https://doi.org/10.1080/10739680490503393.

    Article  CAS  PubMed  Google Scholar 

  75. Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol. 2012;590:1023–34. https://doi.org/10.1113/jphysiol.2011.225417.

    Article  CAS  PubMed  Google Scholar 

  76. Stokes KY, Clanton EC, Bowles KS, et al. The role of T-lymphocytes in hypercholesterolemia-induced leukocyte-endothelial interactions. Microcirculation. 2002;9:407–17. https://doi.org/10.1038/sj.mn.7800148.

    Article  CAS  PubMed  Google Scholar 

  77. Stokes KY, Gurwara S, Granger DN. T-cell derived interferon-gamma contributes to arteriolar dysfunction during acute hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2007;27:1998–2004. https://doi.org/10.1161/ATVBAHA.107.146449.

    Article  CAS  PubMed  Google Scholar 

  78. Wang A, Richhariya A, Gandra SR, et al. Systematic review of low-density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J Am Heart Assoc. 2016;5(7):e003294. https://doi.org/10.1161/JAHA.116.003294.

  79. Sampietro T, Sbrana F, Pasanisi EM, et al. LDL apheresis improves coronary flow reserve on the left anterior descending artery in patients with familial hypercholesterolemia and chronic ischemic heart disease. Atheroscler Suppl. 2017;30:135–40. https://doi.org/10.1016/j.atherosclerosissup.2017.05.038.

    Article  PubMed  Google Scholar 

  80. Mellwig KP, Van Buuren F, Schmidt HK, et al. Improved coronary vasodilatatory capacity by H.E.L.P. apheresis: comparing initial and chronic treatment. Ther Apher Dial. 2006;10(6):510–7. https://doi.org/10.1111/j.1744-9987.2006.00441.x.

    Article  CAS  PubMed  Google Scholar 

  81. Nishimura S, Sekiguchi M, Kano T, et al. Effects of intensive lipid lowering by low-density lipoprotein apheresis on regression of coronary atherosclerosis in patients with familial hypercholesterolemia: Japan low-density lipoprotein apheresis coronary atherosclerosis prospective study (L-CAPS). Atherosclerosis. 1999;144(2):409–17. https://doi.org/10.1016/S0021-9150(98)00328-1.

    Article  CAS  PubMed  Google Scholar 

  82. Wu MD, Moccetti F, Brown E, et al. Lipoprotein apheresis acutely reverses coronary microvascular dysfunction in patients with severe hypercholesterolemia. JACC Cardiovasc Imaging. 2018;12(8 Pt 1):1430–1440. https://doi.org/10.1016/j.jcmg.2018.05.001.

    PubMed  Google Scholar 

  83. Rossenbach J, Mueller GA, Lange K, et al. Lipid-apheresis improves microcirculation of the upper limbs. J Clin Apher. 2011;26(4):167–73. https://doi.org/10.1002/jca.20285.

    Article  PubMed  Google Scholar 

  84. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. https://doi.org/10.1016/S0140-6736(10)61350-5.

    Article  CAS  PubMed  Google Scholar 

  85. Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol. J Am Coll Cardiol. 2011;57(16):1666–75. https://doi.org/10.1016/j.jacc.2010.09.082.

    Article  CAS  PubMed  Google Scholar 

  86. Ishida K, Geshi T, Nakano A, et al. Beneficial effects of statin treatment on coronary microvascular dysfunction and left ventricular remodeling in patients with acute myocardial infarction. Int J Cardiol. 2012;155(3):442–7. https://doi.org/10.1016/j.ijcard.2011.11.015.

    Article  PubMed  Google Scholar 

  87. Paraskevaidis IA, Iliodromitis EK, Ikonomidis I, et al. The effect of acute administration of statins on coronary microcirculation during the pre-revascularization period in patients with myocardial infraction. Atherosclerosis. 2012;223(1):184–9. https://doi.org/10.1016/j.atherosclerosis.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  88. Bonetti PO, Wilson SH, Rodriguez-Porcel M, et al. Simvastatin preserves myocardial perfusion and coronary microvascular permeability in experimental hypercholesterolemia independent of lipid lowering. J Am Coll Cardiol. 2002;40(3):546–54. https://doi.org/10.1016/S0735-1097(02)01985-X.

    Article  CAS  PubMed  Google Scholar 

  89. Lario FC, Miname MH, Tsutsui JM, et al. Atorvastatin treatment improves myocardial and peripheral blood flow in familial hypercholesterolemia subjects without evidence of coronary atherosclerosis. Echocardiography. 2013;30(1):64–71. https://doi.org/10.1111/j.1540-8175.2012.01810.x.

    Article  PubMed  Google Scholar 

  90. Terai N, Spoerl E, Fischer S, et al. Statins affect ocular microcirculation in patients with hypercholesterolaemia. Acta Ophthalmol. 2011;89(6):e500–4. https://doi.org/10.1111/j.1755-3768.2011.02154.x.

    Article  PubMed  Google Scholar 

  91. Tailor A, Lefer DJ, Granger DN. HMG-CoA reductase inhibitor attenuates platelet adhesion in intestinal venules of hypercholesterolemic mice. Am J Physiol Hear Circ Physiol. 2004;286(4):H1402–7. https://doi.org/10.1152/ajpheart.00993.2003.

    Article  CAS  Google Scholar 

  92. Vilahur G, Casani L, Peña E, et al. HMG-CoA reductase inhibition prior reperfusion improves reparative fibrosis post-myocardial infarction in a preclinical experimental model. Int J Cardiol. 2014;175(3):528–38. https://doi.org/10.1016/j.ijcard.2014.06.040.

    Article  PubMed  Google Scholar 

  93. Manfrini O, Pizzi C, Morgagni G, et al. Effect of pravastatin on myocardial perfusion after percutaneous transluminal coronary angioplasty. Am J Cardiol. 2004;93(11):1391–3, A6. https://doi.org/10.1016/j.amjcard.2004.02.037.

    Article  CAS  PubMed  Google Scholar 

  94. Pasceri V, Patti G, Nusca A, et al. Randomized trial of atorvastatin for reduction of myocardial damage during coronary intervention: results from the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) study. Circulation. 2004;110(6):674–8. https://doi.org/10.1161/01.CIR.0000137828.06205.87.

    Article  CAS  PubMed  Google Scholar 

  95. Patti G, Pasceri V, Colonna G, et al. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention. Results of the ARMYDA-ACS randomized trial. J Am Coll Cardiol. 2007;49(12):1272–8. https://doi.org/10.1016/j.jacc.2007.02.025.

    Article  CAS  PubMed  Google Scholar 

  96. Di Sciascio G, Patti G, Pasceri V, et al. Efficacy of atorvastatin reload in patients on chronic statin therapy undergoing percutaneous coronary intervention. Results of the ARMYDA-RECAPTURE (atorvastatin for reduction of myocardial damage during angioplasty) randomized trial. J Am Coll Cardiol. 2009;s(6):558–65. https://doi.org/10.1016/j.jacc.2009.05.028.

    Article  CAS  Google Scholar 

  97. Yadav K, Sharma M, Ferdinand KC. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: present perspectives and future horizons. Nutr Metab Cardiovasc Dis. 2016;26(10):853–62. https://doi.org/10.1016/j.numecd.2016.05.006.

    Article  CAS  PubMed  Google Scholar 

  98. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99. https://doi.org/10.1056/NEJMoa1501031.

    Article  CAS  PubMed  Google Scholar 

  99. Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9. https://doi.org/10.1056/NEJMoa1500858.

    Article  CAS  PubMed  Google Scholar 

  100. Leander K, Mälarstig A, van’t Hooft FM, et al. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factorsclinical perspective. Circulation. 2016;133:1230–9. https://doi.org/10.1161/CIRCULATIONAHA.115.018531.

    Article  CAS  PubMed  Google Scholar 

  101. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  102. Karagiannis AD, Liu M, Toth PP, et al. Pleiotropic anti-atherosclerotic effects of PCSK9 inhibitorsfrom molecular biology to clinical translation. Curr Atheroscler Rep. 2018;20(4):20. https://doi.org/10.1007/s11883-018-0718-x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa PadrĂ³ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

PadrĂ³, T., Vilahur, G., Badimon, L. (2020). Hypercholesterolemia, Lipid-Lowering Strategies and Microcirculation. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics