Skip to main content

On the Convergence Acceleration and Parallel Implementation of Continuation in Disconnected Bifurcation Diagrams for Large-Scale Problems

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1063))

Included in the following conference series:

Abstract

The automated construction of disconnected bifurcation diagrams for large-scale steady-state problems is a difficult task. Standard continuation methods are not suited for Krylov-type solvers when dealing with disconnected solutions and, to allow branch switching, they require that the vectors that span the linear operator kernel at bifurcation points be known. An alternative approach to Krylov-type solvers was suggested by Farrell, Beentjes, and Birkisson in 2016, based on the idea of solution deflation. In this paper, we modify the aforementioned method by changing the algorithm to accelerate convergence and rearranging it to be more suited for parallel architectures together with the pseudo-arclength continuation method. We provide a detailed explanation of the corresponding serial and parallel algorithms. Furthermore, we demonstrate the efficiency and correctness of the algorithms by constructing bifurcation diagrams for the 1D Bratu problem and the stationary Kuramoto–Sivashinsky equation considered in 1D and 2D.

This work was supported by the Russian Foundation for Basic Research (grant No. 18-29-10008 mk).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Springer, Heidelberg (2004). https://doi.org/10.1007/978-1-4757-3978-7

    Book  Google Scholar 

  2. Watson, L.T.: Numerical linear algebra aspects of globally convergent homotopy methods. SIAM Rev. 28(4), 529–545 (1986). https://doi.org/10.1137/1028157

    Article  MathSciNet  MATH  Google Scholar 

  3. Sanchez, J., Marques, F., Lopez, J.M.: A continuation and bifurcation technique for Navier-Stokes flows. J. Comput. Phys. 180, 78–98 (2002). https://doi.org/10.1006/jcph.2002.7072

    Article  MathSciNet  MATH  Google Scholar 

  4. Evstigneev, N., Magnitskii, N.: Nonlinear dynamics of laminar-turbulent transition in generalized 3D Kolmogorov problem for incompressible viscous fluid at symmetric solution subset. J. Appl. Nonlinear Dyn. 6, 345–353 (2017). https://doi.org/10.5890/JAND.2017.09.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Golubitsky, M., Schaeffer, D.: Singularities and Groups in Bifurcation Theory: Volume I. Applied Mathematical Sciences, vol. 51. Springer, Heidelberg (1985). https://doi.org/10.1007/978-1-4612-5034-0

    Book  MATH  Google Scholar 

  6. Wang, X.J., Doedel, E.J.: AUTO94P: an experimental parallel version of AUTO, Technical report, Center for Research on Parallel Computing, California Institute of Technology, Pasadena CA 91125. CRPC-95-3 (1995)

    Google Scholar 

  7. Kuznetsov, Yu.A., Levitin, V.V.: CONTENT: a multiplatform environment for continuation and bifurcation analysis of dynamical systems. Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (1997)

    Google Scholar 

  8. Dhooge, A., Govaerts, W., Kuznetsov, Yu.: MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003). https://doi.org/10.1145/980175.980184

    Article  Google Scholar 

  9. Back, A., Guckenheimer, J., Myers, M.R., Wicklin, F.J., Worfolk, P.A.: DsTool: computer assisted exploration of dynamical systems. Not. Am. Math. Soc. 39(4), 303–309 (1992)

    Google Scholar 

  10. Lust, K., Roose, D., Spence, A., Champneys, A.R.: An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions. SIAM J. Sci. Comput. 19(4), 1188–1209 (1998). https://doi.org/10.1137/S1064827594277673

    Article  MathSciNet  MATH  Google Scholar 

  11. Böhmer, K., Mei, Z., Schwarzer, A., Sebastian, R.: Path-following of large bifurcation problems with iterative methods. In: Doedel, E., Tuckerman, L.S. (eds.) Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. IMA, vol. 119, pp. 37–65. Springer, New York (2000). https://doi.org/10.1007/978-1-4612-1208-9_2

    Chapter  MATH  Google Scholar 

  12. Govaerts, W.J.F.: Numerical Methods for Bifurcations of Dynamic Equilibria. SIAM, Philadelphia (2000). https://doi.org/10.1137/1.9780898719543

    Book  MATH  Google Scholar 

  13. Aruliah, D.A., van Veen, L., Dubitski, A.: PAMPAC: a parallel adaptive method for pseudo-arclength continuation. ACM Trans. Math. Softw. 42(1), Article 8 (2016). https://doi.org/10.1145/2714570

    Article  MathSciNet  Google Scholar 

  14. Marszalek, W., Sadecki, J.: 2D bifurcations and chaos in nonlinear circuits: a parallel computational approach. In: 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Prague, pp. 1–300 (2018). https://doi.org/10.1109/SMACD.2018.8434908

  15. Abbott, J.P.: Numerical continuation methods for nonlinear equations and bifurcation problems. Ph.D. thesis, Australian National University (1977). https://doi.org/10.1017/S0004972700010546

    Article  Google Scholar 

  16. Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics, vol. 5. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-4419-1740-9

    Book  MATH  Google Scholar 

  17. Evstigneev, N.M.: Implementation of implicitly restarted arnoldi method on MultiGPU architecture with application to fluid dynamics problems. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 301–316. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5_22

    Chapter  Google Scholar 

  18. Farrell, P.E., Beentjes, H.L.C., Birkisson, A.: The computation of disconnected bifurcation diagrams. arXiv:1603.00809 (2016)

  19. Farrell, P.E., Birkisson, A., Funke, S.W.: Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput. 37, A2026–A2045 (2015). https://doi.org/10.1137/140984798

    Article  MathSciNet  MATH  Google Scholar 

  20. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Notes on Applied Science, vol. 32. H.M.S.O. (1963)

    Google Scholar 

  21. Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21(1), 124–127 (1950). https://doi.org/10.1214/aoms/1177729893

    Article  MathSciNet  MATH  Google Scholar 

  22. Doedel, E., Keller, H.B., Kernevez, J.P.: Numerical analysis and control of bifurcation problems. II. Bifurcation in infinite dimensions. IJBC 1, 745–772 (1991). https://doi.org/10.1142/S0218127491000555

    Article  MathSciNet  MATH  Google Scholar 

  23. Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Am. Math. Soc. Transl. Ser. 2(29), 295–381 (1963)

    Google Scholar 

  24. Arioli, G., Koch, H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010). https://doi.org/10.1007/s00205-010-0309-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalogirou, A., Keaveny, E.E., Papageorgiou, D.T.: An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation. Proc. Math. Phys. Eng. Sci. 471(2179), 20140932 (2015). https://doi.org/10.1098/rspa.2014.0932

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay M. Evstigneev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Evstigneev, N.M. (2019). On the Convergence Acceleration and Parallel Implementation of Continuation in Disconnected Bifurcation Diagrams for Large-Scale Problems. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2019. Communications in Computer and Information Science, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-030-28163-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28163-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28162-5

  • Online ISBN: 978-3-030-28163-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics