Skip to main content

Hypoxia-Regulated MicroRNAs in the Retina

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

The retina is one of the tissues with the highest metabolic activity in the body, and the energy-demanding photoreceptors require appropriate oxygen levels for photo- and neurotransduction. Accumulating evidence suggests that age-related changes in the retina may reduce oxygen supply to the photoreceptors and trigger a chronic hypoxic response. A detailed understanding of the molecular response to hypoxia is crucial, as hindered oxygen delivery may contribute to the development and progression of retinal pathologies such as age-related macular degeneration (AMD). Important factors in the cellular response to hypoxia are microRNAs (miRNAs), which are small, noncoding RNAs that posttranscriptionally regulate gene expression by binding to mRNA transcripts. Here, we discuss the potential role of hypoxia-regulated miRNAs in connection to retinal pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD :

Age-related macular degeneration

Cyr61 :

Cysteine-rich protein 61

Efna3 :

Receptor-tyrosine kinase ligand ephrin-A3

HIFs :

Hypoxia-inducible transcription factors

HypoxamiRs :

Hypoxia-regulated miRNAs

ISCU :

Iron-sulfur cluster assembly enzyme

miRNAs :

MicroRNAs

OIR :

Oxygen-induced retinopathy

Ptp1b :

Protein tyrosine phosphatase, non-receptor type 1

RISC :

RNA-induced silencing complex

ROP :

Retinopathy of prematurity

Vegf :

Vascular endothelial growth factor

References

  • Agrawal S, Chaqour B (2014) MicroRNA signature and function in retinal neovascularization. World J Biol Chem 5:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Arjamaa O, Nikinmaa M, Salminen A et al (2009) Regulatory role of HIF-1 a in the pathogenesis of age-related macular. Ageing Res Rev 8:349–358

    Article  CAS  PubMed  Google Scholar 

  • Barben M, Schori C, Samardzija M et al (2018a) Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia. Mol Neurodegener 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barben M, Ail D, Storti F et al (2018b) Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress. Cell Death Differ 25:2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berber P, Grassmann F, Kiel C et al (2017) An eye on age-related macular degeneration: the role of microRNAs in disease pathology. Mol Diagn Ther 21:31–43

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Zhao Y, Dua P et al (2016) microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PLoS One 11:e0150211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boldin MP, Baltimore D (2012) MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev 246:205–220

    Article  PubMed  CAS  Google Scholar 

  • Bruning U, Cerone L, Neufeld Z et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31:4087–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camps C, Buffa FM, Colella S et al (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348

    Article  CAS  PubMed  Google Scholar 

  • Chan YC, Khanna S, Roy S et al (2011) miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286:2047–2056

    Article  CAS  PubMed  Google Scholar 

  • Chan YC, Banerjee J, Choi SY et al (2012) miR-210: the master hypoxamir. Microcirculation 19:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan-Ling T, Gock B, Stone J (1995) The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest Ophthalmol Vis Sci 36:1201–1214

    CAS  PubMed  Google Scholar 

  • Chen Z, Li Y, Zhang H et al (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29:4362–4368

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Gillies M, Yam M et al (2016) Differential expression of microRNAs in retinal vasculopathy caused by selective Muller cell disruption. Sci Rep 6:28993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallinger S, Findl O, Strenn K et al (1998) Age dependence of choroidal blood flow. J Am Geriatr Soc 46:484–487

    Article  CAS  PubMed  Google Scholar 

  • Devlin C, Greco S, Martelli F et al (2011) miR-210: more than a silent player in hypoxia. IUBMB Life 63:94–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ertekin S, Yildirim O, Dinc E et al (2014) Evaluation of circulating miRNAs in wet age-related macular degeneration. Mol Vis 20:1057–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasanaro P, D'Alessandra Y, Di Stefano V et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassmann F, Schoenberger PG, Brandl C et al (2014) A circulating microRNA profile is associated with late-stage neovascular age-related macular degeneration. PLoS One 9:e107461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimm C, Hermann DM, Bogdanova A et al (2005) Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protect from retinal degeneration. Semin Cell Dev Biol 16:531–538

    Article  CAS  PubMed  Google Scholar 

  • Hackler L Jr, Wan J, Swaroop A et al (2010) MicroRNA profile of the developing mouse retina. Invest Ophthalmol Vis Sci 51:1823–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Huang M, Li Z et al (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122:S124–S131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivan M, Huang X (2014) miR-210: fine-tuning the hypoxic response. Adv Exp Med Biol 772:205–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Krol J, Krol I, Alvarez CP et al (2015) A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nat Commun 6:7305

    Article  CAS  PubMed  Google Scholar 

  • Kurihara T, Westenskow PD, Gantner ML et al (2016) Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. elife 5:e14319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam AK, Chan ST, Chan H et al (2003) The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography. Optom Vis Sci 80:305–311

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Ling S, Birnbaum Y, Nanhwan MK et al (2013) MicroRNA-dependent cross-talk between VEGF and HIF1alpha in the diabetic retina. Cell Signal 25:2840–2847

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Wang Z, Sun Y et al (2016) Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy. Sci Rep 6:33947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loscher CJ, Hokamp K, Kenna PF et al (2007) Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol 8:R248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loscher CJ, Hokamp K, Wilson JH et al (2008) A common microRNA signature in mouse models of retinal degeneration. Exp Eye Res 87:529–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArthur K, Feng B, Wu Y et al (2011) MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 60:1314–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick RI, Blick C, Ragoussis J et al (2013) miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br J Cancer 108:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray AR, Chen Q, Takahashi Y et al (2013) MicroRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model. Invest Ophthalmol Vis Sci 54:1689–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TA, Jo MH, Choi YG et al (2015) Functional anatomy of the human microprocessor. Cell 161:1374–1387

    Article  CAS  PubMed  Google Scholar 

  • Nunes DN, Dias-Neto E, Cardo-Vila M et al (2015) Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proc Natl Acad Sci U S A 112:3770–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    CAS  Google Scholar 

  • Shen J, Yang X, Xie B et al (2008) MicroRNAs regulate ocular neovascularization. Mol Ther 16:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Li X, Jia YF et al (2013) Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin 34:336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan JR, Koo YX, Kaur P et al (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11:76–92

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Gao Y, Ren AJ et al (2012) Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res 47:195–201

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Lee S, Lazzaro DR et al (2015) Single and compound knock-outs of microRNA (miRNA)-155 and its angiogenic gene target CCN1 in mice alter vascular and neovascular growth in the retina via resident microglia. J Biol Chem 290:23264–23281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fei M, Xue G et al (2012) Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med 16:249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Z, Xiao q HH et al (2015) Down-regulation of microRNA-155 attenuates retinal neovascularization via the PI3K/Akt pathway. Mol Vis 21:1173–1184

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barben, M., Bordonhos, A., Samardzija, M., Grimm, C. (2019). Hypoxia-Regulated MicroRNAs in the Retina. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_68

Download citation

Publish with us

Policies and ethics